
Nginx, Inc.

NGINX Plus Reference Guide
NGINX Plus - release 11, based on 1.11.5 core

October 19, 2016

http://nginx.com

Copyright Notice

© 2012-2016 Nginx, Inc. All rights reserved. NGINX, NGINX Plus and any
Nginx, Inc. product or service name or logo used herein are trademarks of Nginx, Inc.
All other trademarks used herein belong to their respective owners. The trademarks
and logos displayed herein may not be used without the prior written consent of
Nginx, Inc. or their respective owners.

This documentation is provided “AS IS” and is subject to change without notice
and should not be interpreted as a commitment by Nginx, Inc. This documentation
may not be copied, modified or distributed without authorization of Nginx, Inc. and
may be used only in connection with Nginx, Inc. products and services. Nginx, Inc.
assumes no responsibility or liability for any errors or inaccuracies that may appear
in this documentation.

1

Preface

About NGINX

NGINX® (“engine x”) is a high performance, high concurrency web server
excelling at large scale content delivery, web acceleration and protecting
application containers. Its precise integration with modern operating systems
allows unprecedented levels of efficiency even when running on commodity
hardware.

Nginx, Inc. develops and maintains NGINX open source distribution, and
offers commercial support and professional services for NGINX.

About NGINX Plus

• Offers additional features on top of the free open source NGINX version.

• Prepared, tested and supported by NGINX core engineering team led by
the original author Igor Sysoev.

For more information

• Find more details about NGINX products and support at
https://www.nginx.com/.

• For online NGINX documentation visit http://nginx.org/en/docs.

• NGINX and NGINX Plus Tutorial and Admin Guide is available here:
https://www.nginx.com/resources/admin-guide/.

• For general inquiries, please use: nginx-inquiries@nginx.com

2

https://www.nginx.com/
http://nginx.org/en/docs
https://www.nginx.com/resources/admin-guide/
mailto:nginx-inquiries@nginx.com

Contents

Title 1

Preface 2

Table of Contents 3

1 Core modules 6
1.1 Core functionality . 6
1.2 Setting up hashes . 16
1.3 Connection processing methods 17
1.4 Logging to syslog . 18

2 HTTP server modules 19
2.1 Module ngx http core module 19
2.2 Module ngx http access module 56
2.3 Module ngx http addition module 58
2.4 Module ngx http auth basic module 60
2.5 Module ngx http auth jwt module 62
2.6 Module ngx http auth request module 64
2.7 Module ngx http autoindex module 66
2.8 Module ngx http browser module 68
2.9 Module ngx http charset module 70
2.10 Module ngx http dav module 73
2.11 Module ngx http empty gif module 76
2.12 Module ngx http f4f module . 77
2.13 Module ngx http fastcgi module 78
2.14 Module ngx http flv module . 97
2.15 Module ngx http geo module 98
2.16 Module ngx http geoip module 101
2.17 Module ngx http gunzip module 104
2.18 Module ngx http gzip module 105
2.19 Module ngx http gzip static module 109
2.20 Module ngx http headers module 110
2.21 Module ngx http hls module . 112
2.22 Module ngx http image filter module 116
2.23 Module ngx http index module 119
2.24 Module ngx http limit conn module 120

3

CONTENTS CONTENTS

2.25 Module ngx http limit req module 123
2.26 Module ngx http log module . 126
2.27 Module ngx http map module 130
2.28 Module ngx http memcached module 133
2.29 Module ngx http mp4 module 138
2.30 Module ngx http perl module 141
2.31 Module ngx http proxy module 147
2.32 Module ngx http random index module 174
2.33 Module ngx http realip module 175
2.34 Module ngx http referer module 177
2.35 Module ngx http rewrite module 179
2.36 Module ngx http scgi module 185
2.37 Module ngx http secure link module 202
2.38 Module ngx http session log module 205
2.39 Module ngx http slice module 207
2.40 Module ngx http split clients module 209
2.41 Module ngx http ssi module . 210
2.42 Module ngx http ssl module . 215
2.43 Module ngx http status module 225
2.44 Module ngx http stub status module 234
2.45 Module ngx http sub module 236
2.46 Module ngx http upstream module 238
2.47 Module ngx http upstream conf module 254
2.48 Module ngx http userid module 258
2.49 Module ngx http uwsgi module 261
2.50 Module ngx http v2 module . 281
2.51 Module ngx http xslt module 284

3 Stream server modules 287
3.1 Module ngx stream core module 287
3.2 Module ngx stream access module 295
3.3 Module ngx stream geo module 296
3.4 Module ngx stream geoip module 298
3.5 Module ngx stream limit conn module 301
3.6 Module ngx stream log module 303
3.7 Module ngx stream map module 306
3.8 Module ngx stream proxy module 309
3.9 Module ngx stream realip module 316
3.10 Module ngx stream return module 317
3.11 Module ngx stream split clients module 318
3.12 Module ngx stream ssl module 319
3.13 Module ngx stream ssl preread module 325
3.14 Module ngx stream upstream module 327

Nginx, Inc. p.4 of 379

CONTENTS CONTENTS

4 Mail server modules 336
4.1 Module ngx mail core module 336
4.2 Module ngx mail auth http module 341
4.3 Module ngx mail proxy module 345
4.4 Module ngx mail ssl module . 347
4.5 Module ngx mail imap module 355
4.6 Module ngx mail pop3 module 356
4.7 Module ngx mail smtp module 357

5 Miscellaneous 358
5.1 High Availability support for NGINX Plus 358
5.2 Command-line parameters . 364

A Changelog for NGINX Plus 365

B Legal Notices 370

Index 373

Nginx, Inc. p.5 of 379

Chapter 1

Core modules

1.1 Core functionality

1.1.1 Example Configuration 7
1.1.2 Directives . 7

accept mutex . 7
accept mutex delay . 7
daemon . 7
debug connection . 8
debug points . 8
error log . 8
env . 9
events . 10
include . 10
load module . 10
lock file . 10
master process . 11
multi accept . 11
pcre jit . 11
pid . 11
ssl engine . 11
thread pool . 12
timer resolution . 12
use . 12
user . 13
worker aio requests . 13
worker connections . 13
worker cpu affinity . 13
worker priority . 14
worker processes . 14
worker rlimit core . 15
worker rlimit nofile . 15
working directory . 15

6

CHAPTER 1. CORE MODULES 1.1. CORE FUNCTIONALITY

1.1.1 Example Configuration

user www www;
worker_processes 2;

error_log /var/log/nginx-error.log info;

events {
use kqueue;
worker_connections 2048;

}

...

1.1.2 Directives

accept mutex

Syntax: accept_mutex on | off;

Default off

Context: events

If accept_mutex is enabled, worker processes will accept new connections
by turn. Otherwise, all worker processes will be notified about new
connections, and if volume of new connections is low, some of the worker
processes may just waste system resources.

There is no need to enable accept_mutex on systems that support the
EPOLLEXCLUSIVE flag (1.11.3) or when using reuseport.

Prior to version 1.11.3, the default value was on.

accept mutex delay

Syntax: accept_mutex_delay time;

Default 500ms

Context: events

If accept mutex is enabled, specifies the maximum time during which a
worker process will try to restart accepting new connections if another worker
process is currently accepting new connections.

daemon

Syntax: daemon on | off;

Default on

Context: main

Determines whether nginx should become a daemon. Mainly used during
development.

Nginx, Inc. p.7 of 379

CHAPTER 1. CORE MODULES 1.1. CORE FUNCTIONALITY

debug connection

Syntax: debug_connection address | CIDR | unix:;

Default —

Context: events

Enables debugging log for selected client connections. Other connections
will use logging level set by the error log directive. Debugged connections
are specified by IPv4 or IPv6 (1.3.0, 1.2.1) address or network. A connection
may also be specified using a hostname. For connections using UNIX-domain
sockets (1.3.0, 1.2.1), debugging log is enabled by the “unix:” parameter.

events {
debug_connection 127.0.0.1;
debug_connection localhost;
debug_connection 192.0.2.0/24;
debug_connection ::1;
debug_connection 2001:0db8::/32;
debug_connection unix:;
...

}

For this directive to work, nginx needs to be built with --with-debug,
see “A debugging log”.

debug points

Syntax: debug_points abort | stop;

Default —

Context: main

This directive is used for debugging.
When internal error is detected, e.g. the leak of sockets on restart of

working processes, enabling debug_points leads to a core file creation
(abort) or to stopping of a process (stop) for further analysis using a system
debugger.

error log

Syntax: error_log file [level];

Default logs/error.log error

Context: main, http, mail, stream, server, location

Configures logging. Several logs can be specified on the same level (1.5.2).
The first parameter defines a file that will store the log.
The special value stderr selects the standard error file. Logging to syslog

can be configured by specifying the “syslog:” prefix. Logging to a cyclic
memory buffer can be configured by specifying the “memory:” prefix and
buffer size, and is generally used for debugging (1.7.11).

The second parameter determines the level of logging, and can be one of the
following: debug, info, notice, warn, error, crit, alert, or emerg.

Nginx, Inc. p.8 of 379

http://nginx.org/en/docs/debugging_log.html
http://nginx.org/en/docs/debugging_log.html#memory
http://nginx.org/en/docs/debugging_log.html#memory

CHAPTER 1. CORE MODULES 1.1. CORE FUNCTIONALITY

Log levels above are listed in the order of increasing severity. Setting a certain
log level will cause all messages of the specified and more severe log levels to
be logged. For example, the default level error will cause error, crit,
alert, and emerg messages to be logged. If this parameter is omitted then
error is used.

For debug logging to work, nginx needs to be built with --with-debug,
see “A debugging log”.

The directive can be specified on the stream level starting from version
1.7.11.

The directive can be specified on the mail level starting from version
1.9.0.

env

Syntax: env variable[=value];

Default TZ

Context: main

By default, nginx removes all environment variables inherited from its
parent process except the TZ variable. This directive allows preserving some
of the inherited variables, changing their values, or creating new environment
variables. These variables are then:

• inherited during a live upgrade of an executable file;

• used by the ngx http perl module module;

• used by worker processes. One should bear in mind that controlling
system libraries in this way is not always possible as it is common for
libraries to check variables only during initialization, well before they can
be set using this directive. An exception from this is an above mentioned
live upgrade of an executable file.

The TZ variable is always inherited and available to the ngx http perl -
module module, unless it is configured explicitly.

Usage example:

env MALLOC_OPTIONS;
env PERL5LIB=/data/site/modules;
env OPENSSL_ALLOW_PROXY_CERTS=1;

The NGINX environment variable is used internally by nginx and should
not be set directly by the user.

Nginx, Inc. p.9 of 379

http://nginx.org/en/docs/debugging_log.html
http://nginx.org/en/docs/control.html#upgrade
http://nginx.org/en/docs/control.html#upgrade

CHAPTER 1. CORE MODULES 1.1. CORE FUNCTIONALITY

events

Syntax: events { . . . }
Default —

Context: main

Provides the configuration file context in which the directives that affect
connection processing are specified.

include

Syntax: include file | mask;

Default —

Context: any

Includes another file, or files matching the specified mask, into
configuration. Included files should consist of syntactically correct directives
and blocks.

Usage example:

include mime.types;
include vhosts/*.conf;

load module

Syntax: load_module file;

Default —

Context: main
This directive appeared in version 1.9.11.

Loads a dynamic module.
Example:

load_module modules/ngx_mail_module.so;

lock file

Syntax: lock_file file;

Default logs/nginx.lock

Context: main

nginx uses the locking mechanism to implement accept mutex and serialize
access to shared memory. On most systems the locks are implemented using
atomic operations, and this directive is ignored. On other systems the “lock
file” mechanism is used. This directive specifies a prefix for the names of lock
files.

Nginx, Inc. p.10 of 379

CHAPTER 1. CORE MODULES 1.1. CORE FUNCTIONALITY

master process

Syntax: master_process on | off;

Default on

Context: main

Determines whether worker processes are started. This directive is intended
for nginx developers.

multi accept

Syntax: multi_accept on | off;

Default off

Context: events

If multi_accept is disabled, a worker process will accept one new
connection at a time. Otherwise, a worker process will accept all new
connections at a time.

The directive is ignored if kqueue connection processing method is used,
because it reports the number of new connections waiting to be accepted.

pcre jit

Syntax: pcre_jit on | off;

Default off

Context: main
This directive appeared in version 1.1.12.

Enables or disables the use of “just-in-time compilation” (PCRE JIT) for
the regular expressions known by the time of configuration parsing.

PCRE JIT can speed up processing of regular expressions significantly.

The JIT is available in PCRE libraries starting from version 8.20 built
with the --enable-jit configuration parameter. When the PCRE library
is built with nginx (--with-pcre=), the JIT support is enabled via the
--with-pcre-jit configuration parameter.

pid

Syntax: pid file;

Default nginx.pid

Context: main

Defines a file that will store the process ID of the main process.

ssl engine

Syntax: ssl_engine device;

Default —

Context: main

Nginx, Inc. p.11 of 379

CHAPTER 1. CORE MODULES 1.1. CORE FUNCTIONALITY

Defines the name of the hardware SSL accelerator.

thread pool

Syntax: thread_pool name threads=number [max_queue=number];

Default default threads=32 max_queue=65536

Context: main
This directive appeared in version 1.7.11.

Defines named thread pools used for multi-threaded reading and sending
of files without blocking worker processes.

The threads parameter defines the number of threads in the pool.
In the event that all threads in the pool are busy, a new task will wait in

the queue. The max_queue parameter limits the number of tasks allowed to
be waiting in the queue. By default, up to 65536 tasks can wait in the queue.
When the queue overflows, the task is completed with an error.

timer resolution

Syntax: timer_resolution interval;

Default —

Context: main

Reduces timer resolution in worker processes, thus reducing the number
of gettimeofday system calls made. By default, gettimeofday is called
each time a kernel event is received. With reduced resolution, gettimeofday
is only called once per specified interval.

Example:

timer_resolution 100ms;

Internal implementation of the interval depends on the method used:

• the EVFILT_TIMER filter if kqueue is used;

• timer_create if eventport is used;

• setitimer otherwise.

use

Syntax: use method;

Default —

Context: events

Specifies the connection processing method to use. There is normally no
need to specify it explicitly, because nginx will by default use the most efficient
method.

Nginx, Inc. p.12 of 379

CHAPTER 1. CORE MODULES 1.1. CORE FUNCTIONALITY

user

Syntax: user user [group];

Default nobody nobody

Context: main

Defines user and group credentials used by worker processes. If group is
omitted, a group whose name equals that of user is used.

worker aio requests

Syntax: worker_aio_requests number;

Default 32

Context: events
This directive appeared in versions 1.1.4 and 1.0.7.

When using aio with the epoll connection processing method, sets the
maximum number of outstanding asynchronous I/O operations for a single
worker process.

worker connections

Syntax: worker_connections number;

Default 512

Context: events

Sets the maximum number of simultaneous connections that can be opened
by a worker process.

It should be kept in mind that this number includes all connections (e.g.
connections with proxied servers, among others), not only connections with
clients. Another consideration is that the actual number of simultaneous
connections cannot exceed the current limit on the maximum number of open
files, which can be changed by worker rlimit nofile.

worker cpu affinity

Syntax: worker_cpu_affinity cpumask . . . ;

Syntax: worker_cpu_affinity auto [cpumask];

Default —

Context: main

Binds worker processes to the sets of CPUs. Each CPU set is represented
by a bitmask of allowed CPUs. There should be a separate set defined for each
of the worker processes. By default, worker processes are not bound to any
specific CPUs.

For example,

worker_processes 4;
worker_cpu_affinity 0001 0010 0100 1000;

binds each worker process to a separate CPU, while

Nginx, Inc. p.13 of 379

CHAPTER 1. CORE MODULES 1.1. CORE FUNCTIONALITY

worker_processes 2;
worker_cpu_affinity 0101 1010;

binds the first worker process to CPU0/CPU2, and the second worker
process to CPU1/CPU3. The second example is suitable for hyper-threading.

The special value auto (1.9.10) allows binding worker processes
automatically to available CPUs:

worker_processes auto;
worker_cpu_affinity auto;

The optional mask parameter can be used to limit the CPUs available for
automatic binding:

worker_cpu_affinity auto 01010101;

The directive is only available on FreeBSD and Linux.

worker priority

Syntax: worker_priority number;

Default 0

Context: main

Defines the scheduling priority for worker processes like it is done by the
nice command: a negative number means higher priority. Allowed range
normally varies from -20 to 20.

Example:

worker_priority -10;

worker processes

Syntax: worker_processes number | auto;

Default 1

Context: main

Defines the number of worker processes.
The optimal value depends on many factors including (but not limited to)

the number of CPU cores, the number of hard disk drives that store data, and
load pattern. When one is in doubt, setting it to the number of available CPU
cores would be a good start (the value “auto” will try to autodetect it).

The auto parameter is supported starting from versions 1.3.8 and 1.2.5.

Nginx, Inc. p.14 of 379

CHAPTER 1. CORE MODULES 1.1. CORE FUNCTIONALITY

worker rlimit core

Syntax: worker_rlimit_core size;

Default —

Context: main

Changes the limit on the largest size of a core file (RLIMIT_CORE) for
worker processes. Used to increase the limit without restarting the main
process.

worker rlimit nofile

Syntax: worker_rlimit_nofile number;

Default —

Context: main

Changes the limit on the maximum number of open files
(RLIMIT_NOFILE) for worker processes. Used to increase the limit
without restarting the main process.

working directory

Syntax: working_directory directory;

Default —

Context: main

Defines the current working directory for a worker process. It is primarily
used when writing a core-file, in which case a worker process should have write
permission for the specified directory.

Nginx, Inc. p.15 of 379

CHAPTER 1. CORE MODULES 1.2. SETTING UP HASHES

1.2 Setting up hashes

1.2.1 Overview . 16

1.2.1 Overview

To quickly process static sets of data such as server names, map directive’s
values, MIME types, names of request header strings, nginx uses hash tables.
During the start and each re-configuration nginx selects the minimum possible
sizes of hash tables such that the bucket size that stores keys with identical
hash values does not exceed the configured parameter (hash bucket size). The
size of a table is expressed in buckets. The adjustment is continued until
the table size exceeds the hash max size parameter. Most hashes have the
corresponding directives that allow changing these parameters, for example,
for the server names hash they are server names hash max size and server -
names hash bucket size.

The hash bucket size parameter is aligned to the size that is a multiple of
the processor’s cache line size. This speeds up key search in a hash on modern
processors by reducing the number of memory accesses. If hash bucket size is
equal to one processor’s cache line size then the number of memory accesses
during the key search will be two in the worst case — first to compute the
bucket address, and second during the key search inside the bucket. Therefore,
if nginx emits the message requesting to increase either hash max size or hash
bucket size then the first parameter should first be increased.

Nginx, Inc. p.16 of 379

CHAPTER 1. CORE MODULES 1.3. CONNECTION PROCESSING METHODS

1.3 Connection processing methods

1.3.1 Overview . 17

1.3.1 Overview

nginx supports a variety of connection processing methods. The availability
of a particular method depends on the platform used. On platforms that
support several methods nginx will normally select the most efficient method
automatically. However, if needed, a connection processing method can be
selected explicitly with the use directive.

The following connection processing methods are supported:

• select — standard method. The supporting module is built au-
tomatically on platforms that lack more efficient methods. The
--with-select_module and --without-select_module con-
figuration parameters can be used to forcibly enable or disable the build
of this module.

• poll — standard method. The supporting module is built au-
tomatically on platforms that lack more efficient methods. The
--with-poll_module and --without-poll_module configura-
tion parameters can be used to forcibly enable or disable the build of
this module.

• kqueue — efficient method used on FreeBSD 4.1+, OpenBSD 2.9+,
NetBSD 2.0, and Mac OS X.

• epoll — efficient method used on Linux 2.6+.

The EPOLLRDHUP (Linux 2.6.17, glibc 2.8) and EPOLLEXCLUSIVE
(Linux 4.5, glibc 2.24) flags are supported since 1.11.3.

Some older distributions like SuSE 8.2 provide patches that add epoll
support to 2.4 kernels.

• /dev/poll — efficient method used on Solaris 7 11/99+, HP/UX
11.22+ (eventport), IRIX 6.5.15+, and Tru64 UNIX 5.1A+.

• eventport — event ports, efficient method used on Solaris 10.

Nginx, Inc. p.17 of 379

CHAPTER 1. CORE MODULES 1.4. LOGGING TO SYSLOG

1.4 Logging to syslog

1.4.1 Overview . 18

1.4.1 Overview

The error log and access log directives support logging to syslog. The
following parameters configure logging to syslog:

server=address
Defines the address of a syslog server. The address can be specified as a
domain name or IP address, with an optional port, or as a UNIX-domain
socket path specified after the“unix:”prefix. If port is not specified, the
UDP port 514 is used. If a domain name resolves to several IP addresses,
the first resolved address is used.

facility=string
Sets facility of syslog messages, as defined in RFC 3164. Facility can
be one of “kern”, “user”, “mail”, “daemon”, “auth”, “intern”,
“lpr”,“news”,“uucp”,“clock”,“authpriv”,“ftp”,“ntp”,“audit”,
“alert”, “cron”, “local0”..“local7”. Default is “local7”.

severity=string
Sets severity of syslog messages for access log, as defined in RFC 3164.
Possible values are the same as for the second parameter (level) of the
error log directive. Default is “info”.

Severity of error messages is determined by nginx, thus the parameter
is ignored in the error_log directive.

tag=string
Sets the tag of syslog messages. Default is “nginx”.

nohostname
Disables adding the “hostname” field into the syslog message header
(1.9.7).

Example syslog configuration:

error_log syslog:server=192.168.1.1 debug;

access_log syslog:server=unix:/var/log/nginx.sock,nohostname;
access_log syslog:server=[2001:db8::1]:12345,facility=local7,tag=nginx,severity

=info combined;

Logging to syslog is available since version 1.7.1. As part of our
commercial subscription logging to syslog is available since version 1.5.3.

Nginx, Inc. p.18 of 379

http://tools.ietf.org/html/rfc3164#section-4.1.1
http://tools.ietf.org/html/rfc3164#section-4.1.1
http://nginx.com/products/

Chapter 2

HTTP server modules

2.1 Module ngx http core module

2.1.1 Directives . 21
aio . 21
aio write . 22
alias . 22
chunked transfer encoding 23
client body buffer size 23
client body in file only 23
client body in single buffer 24
client body temp path 24
client body timeout . 24
client header buffer size 24
client header timeout . 25
client max body size . 25
connection pool size . 25
default type . 25
directio . 25
directio alignment . 26
disable symlinks . 26
error page . 27
etag . 28
http . 28
if modified since . 28
ignore invalid headers 29
internal . 29
keepalive disable . 30
keepalive requests . 30
keepalive timeout . 30
large client header buffers 31
limit except . 31
limit rate . 31
limit rate after . 32

19

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

lingering close . 32
lingering time . 32
lingering timeout . 33
listen . 33
location . 36
log not found . 38
log subrequest . 38
max ranges . 38
merge slashes . 38
msie padding . 39
msie refresh . 39
open file cache . 39
open file cache errors . 40
open file cache min uses 40
open file cache valid . 40
output buffers . 40
port in redirect . 41
postpone output . 41
read ahead . 41
recursive error pages . 41
request pool size . 41
reset timedout connection 42
resolver . 42
resolver timeout . 43
root . 43
satisfy . 43
send lowat . 44
send timeout . 44
sendfile . 44
sendfile max chunk . 45
server . 45
server name . 45
server name in redirect 47
server names hash bucket size 47
server names hash max size 47
server tokens . 48
tcp nodelay . 48
tcp nopush . 48
try files . 48
types . 50
types hash bucket size 51
types hash max size . 51
underscores in headers 51
variables hash bucket size 51
variables hash max size 52

2.1.2 Embedded Variables . 52

Nginx, Inc. p.20 of 379

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

2.1.1 Directives

aio

Syntax: aio on | off | threads[=pool];

Default off

Context: http, server, location
This directive appeared in version 0.8.11.

Enables or disables the use of asynchronous file I/O (AIO) on FreeBSD and
Linux:

location /video/ {
aio on;
output_buffers 1 64k;

}

On FreeBSD, AIO can be used starting from FreeBSD 4.3. AIO can either
be linked statically into a kernel:

options VFS_AIO

or loaded dynamically as a kernel loadable module:

kldload aio

On Linux, AIO can be used starting from kernel version 2.6.22. Also, it is
necessary to enable directio, or otherwise reading will be blocking:

location /video/ {
aio on;
directio 512;
output_buffers 1 128k;

}

On Linux, directio can only be used for reading blocks that are aligned on
512-byte boundaries (or 4K for XFS). File’s unaligned end is read in blocking
mode. The same holds true for byte range requests and for FLV requests not
from the beginning of a file: reading of unaligned data at the beginning and
end of a file will be blocking.

When both AIO and sendfile are enabled on Linux, AIO is used for files
that are larger than or equal to the size specified in the directio directive, while
sendfile is used for files of smaller sizes or when directio is disabled.

location /video/ {
sendfile on;
aio on;
directio 8m;

}

Finally, files can be read and sent using multi-threading (1.7.11), without
blocking a worker process:

Nginx, Inc. p.21 of 379

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

location /video/ {
sendfile on;
aio threads;

}

Read and send file operations are offloaded to threads of the specified pool.
If the pool name is omitted, the pool with the name “default” is used. The
pool name can also be set with variables:

aio threads=pool$disk;

By default, multi-threading is disabled, it should be enabled with the
--with-threads configuration parameter. Currently, multi-threading is
compatible only with the epoll, kqueue, and eventport methods. Multi-
threaded sending of files is only supported on Linux.

See also the sendfile directive.

aio write

Syntax: aio_write on | off;

Default off

Context: http, server, location
This directive appeared in version 1.9.13.

If aio is enabled, specifies whether it is used for writing files. Currently,
this only works when using aio threads and is limited to writing temporary
files with data received from proxied servers.

alias

Syntax: alias path;

Default —

Context: location

Defines a replacement for the specified location. For example, with the
following configuration

location /i/ {
alias /data/w3/images/;

}

on request of “/i/top.gif”, the file /data/w3/images/top.gif will
be sent.

The path value can contain variables, except $document root and
$realpath root.

If alias is used inside a location defined with a regular expression then
such regular expression should contain captures and alias should refer to
these captures (0.7.40), for example:

location ~ ^/users/(.+\.(?:gif|jpe?g|png))$ {

Nginx, Inc. p.22 of 379

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

alias /data/w3/images/$1;
}

When location matches the last part of the directive’s value:

location /images/ {
alias /data/w3/images/;

}

it is better to use the root directive instead:

location /images/ {
root /data/w3;

}

chunked transfer encoding

Syntax: chunked_transfer_encoding on | off;

Default on

Context: http, server, location

Allows disabling chunked transfer encoding in HTTP/1.1. It may come in
handy when using a software failing to support chunked encoding despite the
standard’s requirement.

client body buffer size

Syntax: client_body_buffer_size size;

Default 8k|16k

Context: http, server, location

Sets buffer size for reading client request body. In case the request body is
larger than the buffer, the whole body or only its part is written to a temporary
file. By default, buffer size is equal to two memory pages. This is 8K on x86,
other 32-bit platforms, and x86-64. It is usually 16K on other 64-bit platforms.

client body in file only

Syntax: client_body_in_file_only on | clean | off;

Default off

Context: http, server, location

Determines whether nginx should save the entire client request body into
a file. This directive can be used during debugging, or when using the
$request body file variable, or the $r->request body file method of the module
ngx http perl module.

When set to the value on, temporary files are not removed after request
processing.

The value clean will cause the temporary files left after request processing
to be removed.

Nginx, Inc. p.23 of 379

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

client body in single buffer

Syntax: client_body_in_single_buffer on | off;

Default off

Context: http, server, location

Determines whether nginx should save the entire client request body in
a single buffer. The directive is recommended when using the $request body
variable, to save the number of copy operations involved.

client body temp path

Syntax: client_body_temp_path path [level1 [level2 [level3]]];

Default client_body_temp

Context: http, server, location

Defines a directory for storing temporary files holding client request bodies.
Up to three-level subdirectory hierarchy can be used under the specified
directory. For example, in the following configuration

client_body_temp_path /spool/nginx/client_temp 1 2;

a path to a temporary file might look like this:

/spool/nginx/client_temp/7/45/00000123457

client body timeout

Syntax: client_body_timeout time;

Default 60s

Context: http, server, location

Defines a timeout for reading client request body. The timeout is set only
for a period between two successive read operations, not for the transmission
of the whole request body. If a client does not transmit anything within this
time, the 408 Request Time-out error is returned to the client.

client header buffer size

Syntax: client_header_buffer_size size;

Default 1k

Context: http, server

Sets buffer size for reading client request header. For most requests, a
buffer of 1K bytes is enough. However, if a request includes long cookies, or
comes from a WAP client, it may not fit into 1K. If a request line or a request
header field does not fit into this buffer then larger buffers, configured by the
large client header buffers directive, are allocated.

Nginx, Inc. p.24 of 379

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

client header timeout

Syntax: client_header_timeout time;

Default 60s

Context: http, server

Defines a timeout for reading client request header. If a client does not
transmit the entire header within this time, the 408 Request Time-out
error is returned to the client.

client max body size

Syntax: client_max_body_size size;

Default 1m

Context: http, server, location

Sets the maximum allowed size of the client request body, specified in the
Content-Length request header field. If the size in a request exceeds the
configured value, the 413 Request Entity Too Large error is returned
to the client. Please be aware that browsers cannot correctly display this error.
Setting size to 0 disables checking of client request body size.

connection pool size

Syntax: connection_pool_size size;

Default 256|512

Context: http, server

Allows accurate tuning of per-connection memory allocations. This
directive has minimal impact on performance and should not generally be
used. By default, the size is equal to 256 bytes on 32-bit platforms and 512
bytes on 64-bit platforms.

Prior to version 1.9.8, the default value was 256 on all platforms.

default type

Syntax: default_type mime-type;

Default text/plain

Context: http, server, location

Defines the default MIME type of a response. Mapping of file name
extensions to MIME types can be set with the types directive.

directio

Syntax: directio size | off;

Default off

Context: http, server, location
This directive appeared in version 0.7.7.

Nginx, Inc. p.25 of 379

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

Enables the use of the O_DIRECT flag (FreeBSD, Linux), the F_NOCACHE
flag (Mac OS X), or the directio function (Solaris), when reading files that
are larger than or equal to the specified size. The directive automatically
disables (0.7.15) the use of sendfile for a given request. It can be useful for
serving large files:

directio 4m;

or when using aio on Linux.

directio alignment

Syntax: directio_alignment size;

Default 512

Context: http, server, location
This directive appeared in version 0.8.11.

Sets the alignment for directio. In most cases, a 512-byte alignment is
enough. However, when using XFS under Linux, it needs to be increased to
4K.

disable symlinks

Syntax: disable_symlinks off;

Syntax: disable_symlinks on | if_not_owner [from=part];

Default off

Context: http, server, location
This directive appeared in version 1.1.15.

Determines how symbolic links should be treated when opening files:

off
Symbolic links in the pathname are allowed and not checked. This is the
default behavior.

on
If any component of the pathname is a symbolic link, access to a file is
denied.

if_not_owner
Access to a file is denied if any component of the pathname is a symbolic
link, and the link and object that the link points to have different owners.

from=part
When checking symbolic links (parameters on and if_not_owner), all
components of the pathname are normally checked. Checking of symbolic
links in the initial part of the pathname may be avoided by specifying
additionally the from=part parameter. In this case, symbolic links are
checked only from the pathname component that follows the specified
initial part. If the value is not an initial part of the pathname checked,
the whole pathname is checked as if this parameter was not specified

Nginx, Inc. p.26 of 379

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

at all. If the value matches the whole file name, symbolic links are not
checked. The parameter value can contain variables.

Example:

disable_symlinks on from=$document_root;

This directive is only available on systems that have the openat and
fstatat interfaces. Such systems include modern versions of FreeBSD,
Linux, and Solaris.

Parameters on and if_not_owner add a processing overhead.

On systems that do not support opening of directories only for search,
to use these parameters it is required that worker processes have read
permissions for all directories being checked.

The ngx http autoindex module, ngx http random index module, and
ngx http dav module modules currently ignore this directive.

error page

Syntax: error_page code . . . [=[response]] uri;

Default —

Context: http, server, location, if in location

Defines the URI that will be shown for the specified errors. error_page
directives are inherited from the previous level only if there are no
error_page directives defined on the current level. A uri value can contain
variables.

Example:

error_page 404 /404.html;
error_page 500 502 503 504 /50x.html;

Furthermore, it is possible to change the response code to another using
the “=response” syntax, for example:

error_page 404 =200 /empty.gif;

If an error response is processed by a proxied server or a FastCGI/uws-
gi/SCGI server, and the server may return different response codes (e.g., 200,
302, 401 or 404), it is possible to respond with the code it returns:

error_page 404 = /404.php;

It is also possible to use redirects for error processing:

error_page 403 http://example.com/forbidden.html;
error_page 404 =301 http://example.com/notfound.html;

Nginx, Inc. p.27 of 379

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

In this case, by default, the response code 302 is returned to the client. It
can only be changed to one of the redirect status codes (301, 302, 303, and
307).

If there is no need to change URI during internal redirection it is possible
to pass error processing into a named location:

location / {
error_page 404 = @fallback;

}

location @fallback {
proxy_pass http://backend;

}

If uri processing leads to an error, the status code of the last occurred
error is returned to the client.

etag

Syntax: etag on | off;

Default on

Context: http, server, location
This directive appeared in version 1.3.3.

Enables or disables automatic generation of the ETag response header field
for static resources.

http

Syntax: http { . . . }
Default —

Context: main

Provides the configuration file context in which the HTTP server directives
are specified.

if modified since

Syntax: if_modified_since off | exact | before;

Default exact

Context: http, server, location
This directive appeared in version 0.7.24.

Specifies how to compare modification time of a response with the time in
the If-Modified-Since request header field:

off
the If-Modified-Since request header field is ignored (0.7.34);

exact
exact match;

Nginx, Inc. p.28 of 379

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

before
modification time of a response is less than or equal to the time in the
If-Modified-Since request header field.

ignore invalid headers

Syntax: ignore_invalid_headers on | off;

Default on

Context: http, server

Controls whether header fields with invalid names should be ignored.
Valid names are composed of English letters, digits, hyphens, and possibly
underscores (as controlled by the underscores in headers directive).

If the directive is specified on the server level, its value is only used if a
server is a default one. The value specified also applies to all virtual servers
listening on the same address and port.

internal

Syntax: internal;

Default —

Context: location

Specifies that a given location can only be used for internal requests. For
external requests, the client error 404 Not Found is returned. Internal
requests are the following:

• requests redirected by the error page, index, random index, and try files
directives;

• requests redirected by the X-Accel-Redirect response header field
from an upstream server;

• subrequests formed by the “include virtual” command of the ngx -
http ssi module module and by the ngx http addition module module
directives;

• requests changed by the rewrite directive.

Example:

error_page 404 /404.html;

location /404.html {
internal;

}

There is a limit of 10 internal redirects per request to prevent request
processing cycles that can occur in incorrect configurations. If this limit is
reached, the error 500 Internal Server Error is returned. In such

Nginx, Inc. p.29 of 379

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

cases, the “rewrite or internal redirection cycle” message can be seen in the
error log.

keepalive disable

Syntax: keepalive_disable none | browser . . . ;

Default msie6

Context: http, server, location

Disables keep-alive connections with misbehaving browsers. The browser
parameters specify which browsers will be affected. The value msie6 disables
keep-alive connections with old versions of MSIE, once a POST request is
received. The value safari disables keep-alive connections with Safari and
Safari-like browsers on Mac OS X and Mac OS X-like operating systems. The
value none enables keep-alive connections with all browsers.

Prior to version 1.1.18, the value safari matched all Safari and Safari-
like browsers on all operating systems, and keep-alive connections with them
were disabled by default.

keepalive requests

Syntax: keepalive_requests number;

Default 100

Context: http, server, location
This directive appeared in version 0.8.0.

Sets the maximum number of requests that can be served through one
keep-alive connection. After the maximum number of requests are made, the
connection is closed.

keepalive timeout

Syntax: keepalive_timeout timeout [header timeout];

Default 75s

Context: http, server, location

The first parameter sets a timeout during which a keep-alive client
connection will stay open on the server side. The zero value disables keep-
alive client connections. The optional second parameter sets a value in the
Keep-Alive: timeout=time response header field. Two parameters
may differ.

The Keep-Alive: timeout=time header field is recognized by
Mozilla and Konqueror. MSIE closes keep-alive connections by itself in about
60 seconds.

Nginx, Inc. p.30 of 379

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

large client header buffers

Syntax: large_client_header_buffers number size;

Default 4 8k

Context: http, server

Sets the maximum number and size of buffers used for reading large client
request header. A request line cannot exceed the size of one buffer, or the
414 Request-URI Too Large error is returned to the client. A request
header field cannot exceed the size of one buffer as well, or the 400 Bad
Request error is returned to the client. Buffers are allocated only on demand.
By default, the buffer size is equal to 8K bytes. If after the end of request
processing a connection is transitioned into the keep-alive state, these buffers
are released.

limit except

Syntax: limit_except method . . . { . . . }
Default —

Context: location

Limits allowed HTTP methods inside a location. The method parameter
can be one of the following: GET, HEAD, POST, PUT, DELETE, MKCOL,
COPY, MOVE, OPTIONS, PROPFIND, PROPPATCH, LOCK, UNLOCK, or PATCH.
Allowing the GET method makes the HEAD method also allowed. Access to
other methods can be limited using the ngx http access module and ngx -
http auth basic module modules directives:

limit_except GET {
allow 192.168.1.0/32;
deny all;

}

Please note that this will limit access to all methods except GET and
HEAD.

limit rate

Syntax: limit_rate rate;

Default 0

Context: http, server, location, if in location

Limits the rate of response transmission to a client. The rate is specified
in bytes per second. The zero value disables rate limiting.

The limit is set per a request, and so if a client simultaneously opens two
connections, the overall rate will be twice as much as the specified limit.

Rate limit can also be set in the $limit rate variable. It may be useful in
cases where rate should be limited depending on a certain condition:

server {

Nginx, Inc. p.31 of 379

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

if ($slow) {
set $limit_rate 4k;

}

...
}

Rate limit can also be set in the X-Accel-Limit-Rate header field
of a proxied server response. This capability can be disabled using the
proxy ignore headers, fastcgi ignore headers, uwsgi ignore headers, and scgi -
ignore headers directives.

limit rate after

Syntax: limit_rate_after size;

Default 0

Context: http, server, location, if in location
This directive appeared in version 0.8.0.

Sets the initial amount after which the further transmission of a response
to a client will be rate limited.

Example:

location /flv/ {
flv;
limit_rate_after 500k;
limit_rate 50k;

}

lingering close

Syntax: lingering_close off | on | always;

Default on

Context: http, server, location
This directive appeared in versions 1.1.0 and 1.0.6.

Controls how nginx closes client connections.
The default value “on” instructs nginx to wait for and process additional

data from a client before fully closing a connection, but only if heuristics
suggests that a client may be sending more data.

The value “always” will cause nginx to unconditionally wait for and
process additional client data.

The value “off” tells nginx to never wait for more data and close the
connection immediately. This behavior breaks the protocol and should not be
used under normal circumstances.

lingering time

Syntax: lingering_time time;

Default 30s

Context: http, server, location

Nginx, Inc. p.32 of 379

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

When lingering close is in effect, this directive specifies the maximum time
during which nginx will process (read and ignore) additional data coming from
a client. After that, the connection will be closed, even if there will be more
data.

lingering timeout

Syntax: lingering_timeout time;

Default 5s

Context: http, server, location

When lingering close is in effect, this directive specifies the maximum
waiting time for more client data to arrive. If data are not received during
this time, the connection is closed. Otherwise, the data are read and ignored,
and nginx starts waiting for more data again. The “wait-read-ignore” cycle is
repeated, but no longer than specified by the lingering time directive.

listen

Syntax: listen address[:port] [default_server] [ssl] [http2 | spdy]

[proxy_protocol] [setfib=number] [fastopen=number]

[backlog=number] [rcvbuf=size] [sndbuf=size]

[accept_filter=filter] [deferred] [bind] [ipv6only=on|off]

[reuseport] [so_keepalive=on|off|[keepidle]:[keepintvl]:[keepcnt]];

Syntax: listen port [default_server] [ssl] [http2 | spdy]

[proxy_protocol] [setfib=number] [fastopen=number]

[backlog=number] [rcvbuf=size] [sndbuf=size]

[accept_filter=filter] [deferred] [bind] [ipv6only=on|off]

[reuseport] [so_keepalive=on|off|[keepidle]:[keepintvl]:[keepcnt]];

Syntax: listen unix:path [default_server] [ssl] [http2 | spdy]

[proxy_protocol] [backlog=number] [rcvbuf=size] [sndbuf=size]

[accept_filter=filter] [deferred] [bind]

[so_keepalive=on|off|[keepidle]:[keepintvl]:[keepcnt]];

Default *:80 | *:8000

Context: server

Sets the address and port for IP, or the path for a UNIX-domain socket on
which the server will accept requests. Both address and port, or only address
or only port can be specified. An address may also be a hostname, for example:

listen 127.0.0.1:8000;
listen 127.0.0.1;
listen 8000;
listen *:8000;
listen localhost:8000;

IPv6 addresses (0.7.36) are specified in square brackets:

listen [::]:8000;
listen [::1];

Nginx, Inc. p.33 of 379

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

UNIX-domain sockets (0.8.21) are specified with the “unix:” prefix:

listen unix:/var/run/nginx.sock;

If only address is given, the port 80 is used.
If the directive is not present then either *:80 is used if nginx runs with

the superuser privileges, or *:8000 otherwise.
The default_server parameter, if present, will cause the server to

become the default server for the specified address:port pair. If none of the
directives have the default_server parameter then the first server with
the address:port pair will be the default server for this pair.

In versions prior to 0.8.21 this parameter is named simply default.

The ssl parameter (0.7.14) allows specifying that all connections accepted
on this port should work in SSL mode. This allows for a more compact
configuration for the server that handles both HTTP and HTTPS requests.

The http2 parameter (1.9.5) configures the port to accept HTTP/2
connections. Normally, for this to work the ssl parameter should be specified
as well, but nginx can also be configured to accept HTTP/2 connections
without SSL.

The spdy parameter (1.3.15-1.9.4) allows accepting SPDY connections on
this port. Normally, for this to work the ssl parameter should be specified
as well, but nginx can also be configured to accept SPDY connections without
SSL.

The proxy_protocol parameter (1.5.12) allows specifying that all
connections accepted on this port should use the PROXY protocol.

The listen directive can have several additional parameters specific to
socket-related system calls. These parameters can be specified in any listen
directive, but only once for a given address:port pair.

In versions prior to 0.8.21, they could only be specified in the listen
directive together with the default parameter.

setfib=number
this parameter (0.8.44) sets the associated routing table, FIB (the
SO_SETFIB option) for the listening socket. This currently works only
on FreeBSD.

fastopen=number
enables “TCP Fast Open” for the listening socket (1.5.8) and limits
the maximum length for the queue of connections that have not yet
completed the three-way handshake.

Do not enable this feature unless the server can handle receiving the
same SYN packet with data more than once.

Nginx, Inc. p.34 of 379

http://nginx.org/en/docs/http/configuring_https_servers.html#single_http_https_server
http://www.haproxy.org/download/1.5/doc/proxy-protocol.txt
http://en.wikipedia.org/wiki/TCP_Fast_Open
http://tools.ietf.org/html/rfc7413#section-5.1
http://tools.ietf.org/html/rfc7413#section-6.1
http://tools.ietf.org/html/rfc7413#section-6.1

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

backlog=number
sets the backlog parameter in the listen call that limits the
maximum length for the queue of pending connections. By default,
backlog is set to -1 on FreeBSD, DragonFly BSD, and Mac OS X,
and to 511 on other platforms.

rcvbuf=size
sets the receive buffer size (the SO_RCVBUF option) for the listening
socket.

sndbuf=size
sets the send buffer size (the SO_SNDBUF option) for the listening socket.

accept_filter=filter
sets the name of accept filter (the SO_ACCEPTFILTER option) for the
listening socket that filters incoming connections before passing them
to accept. This works only on FreeBSD and NetBSD 5.0+. Possible
values are dataready and httpready.

deferred
instructs to use a deferred accept (the TCP_DEFER_ACCEPT socket
option) on Linux.

bind
instructs to make a separate bind call for a given address:port pair. This
is useful because if there are several listen directives with the same
port but different addresses, and one of the listen directives listens on
all addresses for the given port (*:port), nginx will bind only to *:port.
It should be noted that the getsockname system call will be made in
this case to determine the address that accepted the connection. If the
setfib, backlog, rcvbuf, sndbuf, accept_filter, deferred,
ipv6only, or so_keepalive parameters are used then for a given
address:port pair a separate bind call will always be made.

ipv6only=on|off
this parameter (0.7.42) determines (via the IPV6_V6ONLY socket
option) whether an IPv6 socket listening on a wildcard address [::]
will accept only IPv6 connections or both IPv6 and IPv4 connections.
This parameter is turned on by default. It can only be set once on start.

Prior to version 1.3.4, if this parameter was omitted then the operating
system’s settings were in effect for the socket.

reuseport
this parameter (1.9.1) instructs to create an individual listening socket for
each worker process (using the SO_REUSEPORT socket option), allowing
a kernel to distribute incoming connections between worker processes.
This currently works only on Linux 3.9+ and DragonFly BSD.

Inappropriate use of this option may have its security implications.

so_keepalive=on|off|[keepidle]:[keepintvl]:[keepcnt]

Nginx, Inc. p.35 of 379

http://man.freebsd.org/accf_data
http://man.freebsd.org/accf_http
http://man7.org/linux/man-pages/man7/socket.7.html

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

this parameter (1.1.11) configures the “TCP keepalive” behavior for
the listening socket. If this parameter is omitted then the operating
system’s settings will be in effect for the socket. If it is set to the
value “on”, the SO_KEEPALIVE option is turned on for the socket.
If it is set to the value “off”, the SO_KEEPALIVE option is turned
off for the socket. Some operating systems support setting of TCP
keepalive parameters on a per-socket basis using the TCP_KEEPIDLE,
TCP_KEEPINTVL, and TCP_KEEPCNT socket options. On such systems
(currently, Linux 2.4+, NetBSD 5+, and FreeBSD 9.0-STABLE), they
can be configured using the keepidle, keepintvl, and keepcnt parameters.
One or two parameters may be omitted, in which case the system default
setting for the corresponding socket option will be in effect. For example,

so_keepalive=30m::10

will set the idle timeout (TCP_KEEPIDLE) to 30 minutes, leave the probe
interval (TCP_KEEPINTVL) at its system default, and set the probes
count (TCP_KEEPCNT) to 10 probes.

Example:

listen 127.0.0.1 default_server accept_filter=dataready backlog=1024;

location

Syntax: location [= | ~ | ~* | ˆ~] uri { . . . }
Syntax: location @name { . . . }
Default —

Context: server, location

Sets configuration depending on a request URI.
The matching is performed against a normalized URI, after decoding

the text encoded in the “%XX” form, resolving references to relative path
components “.” and “..”, and possible compression of two or more adjacent
slashes into a single slash.

A location can either be defined by a prefix string, or by a regular
expression. Regular expressions are specified with the preceding “~*”
modifier (for case-insensitive matching), or the “~” modifier (for case-sensitive
matching). To find location matching a given request, nginx first checks
locations defined using the prefix strings (prefix locations). Among them,
the location with the longest matching prefix is selected and remembered.
Then regular expressions are checked, in the order of their appearance in the
configuration file. The search of regular expressions terminates on the first
match, and the corresponding configuration is used. If no match with a regular
expression is found then the configuration of the prefix location remembered
earlier is used.

location blocks can be nested, with some exceptions mentioned below.

Nginx, Inc. p.36 of 379

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

For case-insensitive operating systems such as Mac OS X and Cygwin,
matching with prefix strings ignores a case (0.7.7). However, comparison is
limited to one-byte locales.

Regular expressions can contain captures (0.7.40) that can later be used in
other directives.

If the longest matching prefix location has the “ˆ~” modifier then regular
expressions are not checked.

Also, using the “=” modifier it is possible to define an exact match of
URI and location. If an exact match is found, the search terminates. For
example, if a “/” request happens frequently, defining “location = /” will
speed up the processing of these requests, as search terminates right after the
first comparison. Such a location cannot obviously contain nested locations.

In versions from 0.7.1 to 0.8.41, if a request matched the prefix location
without the “=” and “ˆ~” modifiers, the search also terminated and regular
expressions were not checked.

Let’s illustrate the above by an example:

location = / {
[configuration A]

}

location / {
[configuration B]

}

location /documents/ {
[configuration C]

}

location ^~ /images/ {
[configuration D]

}

location ~* \.(gif|jpg|jpeg)$ {
[configuration E]

}

The “/” request will match configuration A, the “/index.html”
request will match configuration B, the “/documents/document.html”
request will match configuration C, the “/images/1.gif” request will
match configuration D, and the “/documents/1.jpg” request will match
configuration E.

The “@” prefix defines a named location. Such a location is not used for
a regular request processing, but instead used for request redirection. They
cannot be nested, and cannot contain nested locations.

If a location is defined by a prefix string that ends with the slash character,
and requests are processed by one of proxy pass, fastcgi pass, uwsgi pass,
scgi pass, or memcached pass, then the special processing is performed. In
response to a request with URI equal to this string, but without the trailing
slash, a permanent redirect with the code 301 will be returned to the requested
URI with the slash appended. If this is not desired, an exact match of the URI
and location could be defined like this:

Nginx, Inc. p.37 of 379

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

location /user/ {
proxy_pass http://user.example.com;

}

location = /user {
proxy_pass http://login.example.com;

}

log not found

Syntax: log_not_found on | off;

Default on

Context: http, server, location

Enables or disables logging of errors about not found files into error log.

log subrequest

Syntax: log_subrequest on | off;

Default off

Context: http, server, location

Enables or disables logging of subrequests into access log.

max ranges

Syntax: max_ranges number;

Default —

Context: http, server, location
This directive appeared in version 1.1.2.

Limits the maximum allowed number of ranges in byte-range requests.
Requests that exceed the limit are processed as if there were no byte ranges
specified. By default, the number of ranges is not limited. The zero value
disables the byte-range support completely.

merge slashes

Syntax: merge_slashes on | off;

Default on

Context: http, server

Enables or disables compression of two or more adjacent slashes in a URI
into a single slash.

Note that compression is essential for the correct matching of prefix string
and regular expression locations. Without it, the “//scripts/one.php”
request would not match

location /scripts/ {
...

}

Nginx, Inc. p.38 of 379

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

and might be processed as a static file. So it gets converted to
“/scripts/one.php”.

Turning the compression off can become necessary if a URI contains
base64-encoded names, since base64 uses the“/”character internally. However,
for security considerations, it is better to avoid turning the compression off.

If the directive is specified on the server level, its value is only used if a
server is a default one. The value specified also applies to all virtual servers
listening on the same address and port.

msie padding

Syntax: msie_padding on | off;

Default on

Context: http, server, location

Enables or disables adding comments to responses for MSIE clients with
status greater than 400 to increase the response size to 512 bytes.

msie refresh

Syntax: msie_refresh on | off;

Default off

Context: http, server, location

Enables or disables issuing refreshes instead of redirects for MSIE clients.

open file cache

Syntax: open_file_cache off;

Syntax: open_file_cache max=N [inactive=time];

Default off

Context: http, server, location

Configures a cache that can store:

• open file descriptors, their sizes and modification times;

• information on existence of directories;

• file lookup errors, such as “file not found”, “no read permission”, and so
on.

Caching of errors should be enabled separately by the open file cache -
errors directive.

The directive has the following parameters:

max
sets the maximum number of elements in the cache; on cache overflow
the least recently used (LRU) elements are removed;

Nginx, Inc. p.39 of 379

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

inactive
defines a time after which an element is removed from the cache if it has
not been accessed during this time; by default, it is 60 seconds;

off
disables the cache.

Example:

open_file_cache max=1000 inactive=20s;
open_file_cache_valid 30s;
open_file_cache_min_uses 2;
open_file_cache_errors on;

open file cache errors

Syntax: open_file_cache_errors on | off;

Default off

Context: http, server, location

Enables or disables caching of file lookup errors by open file cache.

open file cache min uses

Syntax: open_file_cache_min_uses number;

Default 1

Context: http, server, location

Sets the minimum number of file accesses during the period configured by
the inactive parameter of the open file cache directive, required for a file
descriptor to remain open in the cache.

open file cache valid

Syntax: open_file_cache_valid time;

Default 60s

Context: http, server, location

Sets a time after which open file cache elements should be validated.

output buffers

Syntax: output_buffers number size;

Default 2 32k

Context: http, server, location

Sets the number and size of the buffers used for reading a response from a
disk.

Prior to version 1.9.5, the default value was 1 32k.

Nginx, Inc. p.40 of 379

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

port in redirect

Syntax: port_in_redirect on | off;

Default on

Context: http, server, location

Enables or disables specifying the port in redirects issued by nginx.
The use of the primary server name in redirects is controlled by the server -

name in redirect directive.

postpone output

Syntax: postpone_output size;

Default 1460

Context: http, server, location

If possible, the transmission of client data will be postponed until nginx
has at least size bytes of data to send. The zero value disables postponing data
transmission.

read ahead

Syntax: read_ahead size;

Default 0

Context: http, server, location

Sets the amount of pre-reading for the kernel when working with file.
On Linux, the posix_fadvise(0, 0, 0, POSIX_FADV_SEQUENTIAL)

system call is used, and so the size parameter is ignored.
On FreeBSD, the fcntl(O_READAHEAD, size) system call, supported

since FreeBSD 9.0-CURRENT, is used. FreeBSD 7 has to be patched.

recursive error pages

Syntax: recursive_error_pages on | off;

Default off

Context: http, server, location

Enables or disables doing several redirects using the error page directive.
The number of such redirects is limited.

request pool size

Syntax: request_pool_size size;

Default 4k

Context: http, server

Allows accurate tuning of per-request memory allocations. This directive
has minimal impact on performance and should not generally be used.

Nginx, Inc. p.41 of 379

http://sysoev.ru/freebsd/patch.readahead.txt

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

reset timedout connection

Syntax: reset_timedout_connection on | off;

Default off

Context: http, server, location

Enables or disables resetting timed out connections. The reset is performed
as follows. Before closing a socket, the SO_LINGER option is set on it with a
timeout value of 0. When the socket is closed, TCP RST is sent to the client,
and all memory occupied by this socket is released. This helps avoid keeping
an already closed socket with filled buffers in a FIN WAIT1 state for a long
time.

It should be noted that timed out keep-alive connections are closed
normally.

resolver

Syntax: resolver address . . . [valid=time] [ipv6=on|off];

Default —

Context: http, server, location

Configures name servers used to resolve names of upstream servers into
addresses, for example:

resolver 127.0.0.1 [::1]:5353;

An address can be specified as a domain name or IP address, and an
optional port (1.3.1, 1.2.2). If port is not specified, the port 53 is used. Name
servers are queried in a round-robin fashion.

Before version 1.1.7, only a single name server could be configured.
Specifying name servers using IPv6 addresses is supported starting from
versions 1.3.1 and 1.2.2.

By default, nginx will look up both IPv4 and IPv6 addresses while resolving.
If looking up of IPv6 addresses is not desired, the ipv6=off parameter can
be specified.

Resolving of names into IPv6 addresses is supported starting from version
1.5.8.

By default, nginx caches answers using the TTL value of a response. An
optional valid parameter allows overriding it:

resolver 127.0.0.1 [::1]:5353 valid=30s;

Before version 1.1.9, tuning of caching time was not possible, and nginx
always cached answers for the duration of 5 minutes.

Nginx, Inc. p.42 of 379

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

To prevent DNS spoofing, it is recommended configuring DNS servers in
a properly secured trusted local network.

resolver timeout

Syntax: resolver_timeout time;

Default 30s

Context: http, server, location

Sets a timeout for name resolution, for example:

resolver_timeout 5s;

root

Syntax: root path;

Default html

Context: http, server, location, if in location

Sets the root directory for requests. For example, with the following
configuration

location /i/ {
root /data/w3;

}

The /data/w3/i/top.gif file will be sent in response to the
“/i/top.gif” request.

The path value can contain variables, except $document root and
$realpath root.

A path to the file is constructed by merely adding a URI to the value of
the root directive. If a URI has to be modified, the alias directive should be
used.

satisfy

Syntax: satisfy all | any;

Default all

Context: http, server, location

Allows access if all (all) or at least one (any) of the ngx http -
access module, ngx http auth basic module, ngx http auth request module,
or ngx http auth jwt module modules allow access.

Example:

location / {
satisfy any;

allow 192.168.1.0/32;
deny all;

Nginx, Inc. p.43 of 379

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

auth_basic "closed site";
auth_basic_user_file conf/htpasswd;

}

send lowat

Syntax: send_lowat size;

Default 0

Context: http, server, location

If the directive is set to a non-zero value, nginx will try to minimize the
number of send operations on client sockets by using either NOTE_LOWAT flag
of the kqueue method or the SO_SNDLOWAT socket option. In both cases the
specified size is used.

This directive is ignored on Linux, Solaris, and Windows.

send timeout

Syntax: send_timeout time;

Default 60s

Context: http, server, location

Sets a timeout for transmitting a response to the client. The timeout is set
only between two successive write operations, not for the transmission of the
whole response. If the client does not receive anything within this time, the
connection is closed.

sendfile

Syntax: sendfile on | off;

Default off

Context: http, server, location, if in location

Enables or disables the use of sendfile.
Starting from nginx 0.8.12 and FreeBSD 5.2.1, aio can be used to pre-load

data for sendfile:

location /video/ {
sendfile on;
tcp_nopush on;
aio on;

}

In this configuration, sendfile is called with the SF_NODISKIO flag
which causes it not to block on disk I/O, but, instead, report back that the
data are not in memory. nginx then initiates an asynchronous data load by
reading one byte. On the first read, the FreeBSD kernel loads the first 128K
bytes of a file into memory, although next reads will only load data in 16K
chunks. This can be changed using the read ahead directive.

Nginx, Inc. p.44 of 379

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

Before version 1.7.11, pre-loading could be enabled with
aio sendfile;.

sendfile max chunk

Syntax: sendfile_max_chunk size;

Default 0

Context: http, server, location

When set to a non-zero value, limits the amount of data that can be
transferred in a single sendfile call. Without the limit, one fast connection
may seize the worker process entirely.

server

Syntax: server { . . . }
Default —

Context: http

Sets configuration for a virtual server. There is no clear separation between
IP-based (based on the IP address) and name-based (based on the Host
request header field) virtual servers. Instead, the listen directives describe
all addresses and ports that should accept connections for the server, and
the server name directive lists all server names. Example configurations are
provided in the “How nginx processes a request” document.

server name

Syntax: server_name name . . . ;

Default ""

Context: server

Sets names of a virtual server, for example:

server {
server_name example.com www.example.com;

}

The first name becomes the primary server name.
Server names can include an asterisk (“*”) replacing the first or last part

of a name:

server {
server_name example.com *.example.com www.example.*;

}

Such names are called wildcard names.
The first two of the names mentioned above can be combined in one:

server {
server_name .example.com;

}

Nginx, Inc. p.45 of 379

http://nginx.org/en/docs/http/request_processing.html

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

It is also possible to use regular expressions in server names, preceding the
name with a tilde (“~”):

server {
server_name www.example.com ~^www\d+\.example\.com$;

}

Regular expressions can contain captures (0.7.40) that can later be used in
other directives:

server {
server_name ~^(www\.)?(.+)$;

location / {
root /sites/$2;

}
}

server {
server_name _;

location / {
root /sites/default;

}
}

Named captures in regular expressions create variables (0.8.25) that can
later be used in other directives:

server {
server_name ~^(www\.)?(?<domain>.+)$;

location / {
root /sites/$domain;

}
}

server {
server_name _;

location / {
root /sites/default;

}
}

If the directive’s parameter is set to “$hostname” (0.9.4), the machine’s
hostname is inserted.

It is also possible to specify an empty server name (0.7.11):

server {
server_name www.example.com "";

}

It allows this server to process requests without the Host header field —
instead of the default server — for the given address:port pair. This is the
default setting.

Nginx, Inc. p.46 of 379

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

Before 0.8.48, the machine’s hostname was used by default.

During searching for a virtual server by name, if the name matches more
than one of the specified variants, (e.g. both a wildcard name and regular
expression match), the first matching variant will be chosen, in the following
order of priority:

1. the exact name

2. the longest wildcard name starting with an asterisk, e.g.
“*.example.com”

3. the longest wildcard name ending with an asterisk, e.g. “mail.*”

4. the first matching regular expression (in order of appearance in the
configuration file)

Detailed description of server names is provided in a separate Server names
document.

server name in redirect

Syntax: server_name_in_redirect on | off;

Default off

Context: http, server, location

Enables or disables the use of the primary server name, specified by the
server name directive, in redirects issued by nginx. When the use of the
primary server name is disabled, the name from the Host request header
field is used. If this field is not present, the IP address of the server is used.

The use of a port in redirects is controlled by the port in redirect directive.

server names hash bucket size

Syntax: server_names_hash_bucket_size size;

Default 32|64|128

Context: http

Sets the bucket size for the server names hash tables. The default value
depends on the size of the processor’s cache line. The details of setting up
hash tables are provided in a separate document.

server names hash max size

Syntax: server_names_hash_max_size size;

Default 512

Context: http

Sets the maximum size of the server names hash tables. The details of
setting up hash tables are provided in a separate document.

Nginx, Inc. p.47 of 379

http://nginx.org/en/docs/http/server_names.html

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

server tokens

Syntax: server_tokens on | off | string;

Default on

Context: http, server, location

Enables or disables emitting nginx version in error messages and in the
Server response header field.

Additionally, as part of our commercial subscription, starting from version
1.9.13 the signature in error messages and the Server response header field
value can be set explicitly using the string with variables. An empty string
disables the emission of the Server field.

tcp nodelay

Syntax: tcp_nodelay on | off;

Default on

Context: http, server, location

Enables or disables the use of the TCP_NODELAY option. The option is
enabled only when a connection is transitioned into the keep-alive state.

tcp nopush

Syntax: tcp_nopush on | off;

Default off

Context: http, server, location

Enables or disables the use of the TCP_NOPUSH socket option on FreeBSD
or the TCP_CORK socket option on Linux. The options are enabled only when
sendfile is used. Enabling the option allows

• sending the response header and the beginning of a file in one packet, on
Linux and FreeBSD 4.*;

• sending a file in full packets.

try files

Syntax: try_files file . . . uri;

Syntax: try_files file . . . =code;

Default —

Context: server, location

Checks the existence of files in the specified order and uses the first found
file for request processing; the processing is performed in the current context.
The path to a file is constructed from the file parameter according to the root
and alias directives. It is possible to check directory’s existence by specifying
a slash at the end of a name, e.g. “$uri/”. If none of the files were found,
an internal redirect to the uri specified in the last parameter is made. For
example:

Nginx, Inc. p.48 of 379

http://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

location /images/ {
try_files $uri /images/default.gif;

}

location = /images/default.gif {
expires 30s;

}

The last parameter can also point to a named location, as shown in
examples below. Starting from version 0.7.51, the last parameter can also
be a code:

location / {
try_files $uri $uri/index.html $uri.html =404;

}

Example in proxying Mongrel:

location / {
try_files /system/maintenance.html

$uri $uri/index.html $uri.html
@mongrel;

}

location @mongrel {
proxy_pass http://mongrel;

}

Example for Drupal/FastCGI:

location / {
try_files $uri $uri/ @drupal;

}

location ~ \.php$ {
try_files $uri @drupal;

fastcgi_pass ...;

fastcgi_param SCRIPT_FILENAME /path/to$fastcgi_script_name;
fastcgi_param SCRIPT_NAME $fastcgi_script_name;
fastcgi_param QUERY_STRING $args;

... other fastcgi_param’s
}

location @drupal {
fastcgi_pass ...;

fastcgi_param SCRIPT_FILENAME /path/to/index.php;
fastcgi_param SCRIPT_NAME /index.php;
fastcgi_param QUERY_STRING q=$uri&$args;

... other fastcgi_param’s
}

In the following example,

location / {
try_files $uri $uri/ @drupal;

}

Nginx, Inc. p.49 of 379

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

the try_files directive is equivalent to

location / {
error_page 404 = @drupal;
log_not_found off;

}

And here,

location ~ \.php$ {
try_files $uri @drupal;

fastcgi_pass ...;

fastcgi_param SCRIPT_FILENAME /path/to$fastcgi_script_name;

...
}

try_files checks the existence of the PHP file before passing the request
to the FastCGI server.

Example for Wordpress and Joomla:

location / {
try_files $uri $uri/ @wordpress;

}

location ~ \.php$ {
try_files $uri @wordpress;

fastcgi_pass ...;

fastcgi_param SCRIPT_FILENAME /path/to$fastcgi_script_name;
... other fastcgi_param’s

}

location @wordpress {
fastcgi_pass ...;

fastcgi_param SCRIPT_FILENAME /path/to/index.php;
... other fastcgi_param’s

}

types

Syntax: types { . . . }
Default text/html html; image/gif gif; image/jpeg jpg;

Context: http, server, location

Maps file name extensions to MIME types of responses. Extensions are
case-insensitive. Several extensions can be mapped to one type, for example:

types {
application/octet-stream bin exe dll;
application/octet-stream deb;
application/octet-stream dmg;

}

Nginx, Inc. p.50 of 379

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

A sufficiently full mapping table is distributed with nginx in the conf/¬
mime.types file.

To make a particular location emit the “application/octet-stream”
MIME type for all requests, the following configuration can be used:

location /download/ {
types { }
default_type application/octet-stream;

}

types hash bucket size

Syntax: types_hash_bucket_size size;

Default 64

Context: http, server, location

Sets the bucket size for the types hash tables. The details of setting up
hash tables are provided in a separate document.

Prior to version 1.5.13, the default value depended on the size of the
processor’s cache line.

types hash max size

Syntax: types_hash_max_size size;

Default 1024

Context: http, server, location

Sets the maximum size of the types hash tables. The details of setting up
hash tables are provided in a separate document.

underscores in headers

Syntax: underscores_in_headers on | off;

Default off

Context: http, server

Enables or disables the use of underscores in client request header fields.
When the use of underscores is disabled, request header fields whose names
contain underscores are marked as invalid and become subject to the ignore -
invalid headers directive.

If the directive is specified on the server level, its value is only used if a
server is a default one. The value specified also applies to all virtual servers
listening on the same address and port.

variables hash bucket size

Syntax: variables_hash_bucket_size size;

Default 64

Context: http

Nginx, Inc. p.51 of 379

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

Sets the bucket size for the variables hash table. The details of setting up
hash tables are provided in a separate document.

variables hash max size

Syntax: variables_hash_max_size size;

Default 1024

Context: http

Sets the maximum size of the variables hash table. The details of setting
up hash tables are provided in a separate document.

Prior to version 1.5.13, the default value was 512.

2.1.2 Embedded Variables

The ngx_http_core_module module supports embedded variables with
names matching the Apache Server variables. First of all, these are variables
representing client request header fields, such as $http user agent, $http cookie,
and so on. Also there are other variables:

$arg name
argument name in the request line

$args
arguments in the request line

$binary remote addr
client address in a binary form, value’s length is always 4 bytes for IPv4
addresses or 16 bytes for IPv6 addresses

$body bytes sent
number of bytes sent to a client, not counting the response header; this
variable is compatible with the“%B”parameter of the mod_log_config
Apache module

$bytes sent
number of bytes sent to a client (1.3.8, 1.2.5)

$connection
connection serial number (1.3.8, 1.2.5)

$connection requests
current number of requests made through a connection (1.3.8, 1.2.5)

$content length
Content-Length request header field

$content type
Content-Type request header field

$cookie name
the name cookie

$document root
root or alias directive’s value for the current request

Nginx, Inc. p.52 of 379

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

$document uri
same as $uri

$host
in this order of precedence: host name from the request line, or host
name from the Host request header field, or the server name matching
a request

$hostname
host name

$http name
arbitrary request header field; the last part of a variable name is the field
name converted to lower case with dashes replaced by underscores

$https
“on” if connection operates in SSL mode, or an empty string otherwise

$is args
“?” if a request line has arguments, or an empty string otherwise

$limit rate
setting this variable enables response rate limiting; see limit rate

$msec
current time in seconds with the milliseconds resolution (1.3.9, 1.2.6)

$nginx version
nginx version

$pid
PID of the worker process

$pipe
“p” if request was pipelined, “.” otherwise (1.3.12, 1.2.7)

$proxy protocol addr
client address from the PROXY protocol header, or an empty string
otherwise (1.5.12)
The PROXY protocol must be previously enabled by setting the
proxy_protocol parameter in the listen directive.

$proxy protocol port
client port from the PROXY protocol header, or an empty string
otherwise (1.11.0)
The PROXY protocol must be previously enabled by setting the
proxy_protocol parameter in the listen directive.

$query string
same as $args

$realpath root
an absolute pathname corresponding to the root or alias directive’s value
for the current request, with all symbolic links resolved to real paths

$remote addr
client address

$remote port
client port

$remote user

Nginx, Inc. p.53 of 379

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

user name supplied with the Basic authentication

$request
full original request line

$request body
request body
The variable’s value is made available in locations processed by the
proxy pass, fastcgi pass, uwsgi pass, and scgi pass directives when the
request body was read to a memory buffer.

$request body file
name of a temporary file with the request body
At the end of processing, the file needs to be removed. To always write
the request body to a file, client body in file only needs to be enabled.
When the name of a temporary file is passed in a proxied request or in
a request to a FastCGI/uwsgi/SCGI server, passing the request body
should be disabled by the proxy pass request body off, fastcgi pass -
request body off, uwsgi pass request body off, or scgi pass request -
body off directives, respectively.

$request completion
“OK” if a request has completed, or an empty string otherwise

$request filename
file path for the current request, based on the root or alias directives,
and the request URI

$request id
unique request identifier generated from 16 random bytes, in hexadecimal
(1.11.0)

$request length
request length (including request line, header, and request body) (1.3.12,
1.2.7)

$request method
request method, usually “GET” or “POST”

$request time
request processing time in seconds with a milliseconds resolution (1.3.9,
1.2.6); time elapsed since the first bytes were read from the client

$request uri
full original request URI (with arguments)

$scheme
request scheme, “http” or “https”

$sent http name
arbitrary response header field; the last part of a variable name is the
field name converted to lower case with dashes replaced by underscores

$server addr
an address of the server which accepted a request
Computing a value of this variable usually requires one system call. To
avoid a system call, the listen directives must specify addresses and use
the bind parameter.

Nginx, Inc. p.54 of 379

CHAPTER 2. HTTP SERVER MODULES 2.1. MODULE NGX HTTP CORE MODULE

$server name
name of the server which accepted a request

$server port
port of the server which accepted a request

$server protocol
request protocol, usually “HTTP/1.0”, “HTTP/1.1”, or “HTTP/2.0”

$status
response status (1.3.2, 1.2.2)

$tcpinfo rtt, $tcpinfo rttvar, $tcpinfo snd cwnd, $tcpinfo rcv space
information about the client TCP connection; available on systems that
support the TCP_INFO socket option

$time iso8601
local time in the ISO 8601 standard format (1.3.12, 1.2.7)

$time local
local time in the Common Log Format (1.3.12, 1.2.7)

$uri
current URI in request, normalized
The value of $uri may change during request processing, e.g. when doing
internal redirects, or when using index files.

Nginx, Inc. p.55 of 379

CHAPTER 2. HTTP SERVER MODULES 2.2. MODULE NGX HTTP ACCESS MODULE

2.2 Module ngx http access module

2.2.1 Summary . 56
2.2.2 Example Configuration 56
2.2.3 Directives . 56

allow . 56
deny . 56

2.2.1 Summary

The ngx_http_access_module module allows limiting access to
certain client addresses.

Access can also be limited by password, by the result of subrequest, or
by JWT. Simultaneous limitation of access by address and by password is
controlled by the satisfy directive.

2.2.2 Example Configuration

location / {
deny 192.168.1.1;
allow 192.168.1.0/24;
allow 10.1.1.0/16;
allow 2001:0db8::/32;
deny all;

}

The rules are checked in sequence until the first match is found. In
this example, access is allowed only for IPv4 networks 10.1.1.0/16 and
192.168.1.0/24 excluding the address 192.168.1.1, and for IPv6
network 2001:0db8::/32. In case of a lot of rules, the use of the ngx -
http geo module module variables is preferable.

2.2.3 Directives

allow

Syntax: allow address | CIDR | unix: | all;

Default —

Context: http, server, location, limit except

Allows access for the specified network or address. If the special value
unix: is specified (1.5.1), allows access for all UNIX-domain sockets.

deny

Syntax: deny address | CIDR | unix: | all;

Default —

Context: http, server, location, limit except

Nginx, Inc. p.56 of 379

CHAPTER 2. HTTP SERVER MODULES 2.2. MODULE NGX HTTP ACCESS MODULE

Denies access for the specified network or address. If the special value
unix: is specified (1.5.1), denies access for all UNIX-domain sockets.

Nginx, Inc. p.57 of 379

CHAPTER 2. HTTP SERVER MODULES 2.3. MODULE NGX HTTP ADDITION MODULE

2.3 Module ngx http addition module

2.3.1 Summary . 58
2.3.2 Example Configuration 58
2.3.3 Directives . 58

add before body . 58
add after body . 58
addition types . 59

2.3.1 Summary

The ngx_http_addition_module module is a filter that adds text
before and after a response. This module is not built by default, it should
be enabled with the --with-http_addition_module configuration
parameter.

2.3.2 Example Configuration

location / {
add_before_body /before_action;
add_after_body /after_action;

}

2.3.3 Directives

add before body

Syntax: add_before_body uri;

Default —

Context: http, server, location

Adds the text returned as a result of processing a given subrequest before
the response body. An empty string ("") as a parameter cancels addition
inherited from the previous configuration level.

add after body

Syntax: add_after_body uri;

Default —

Context: http, server, location

Adds the text returned as a result of processing a given subrequest after
the response body. An empty string ("") as a parameter cancels addition
inherited from the previous configuration level.

Nginx, Inc. p.58 of 379

CHAPTER 2. HTTP SERVER MODULES 2.3. MODULE NGX HTTP ADDITION MODULE

addition types

Syntax: addition_types mime-type . . . ;

Default text/html

Context: http, server, location
This directive appeared in version 0.7.9.

Allows adding text in responses with the specified MIME types, in addition
to “text/html”. The special value “*” matches any MIME type (0.8.29).

Nginx, Inc. p.59 of 379

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP AUTH BASIC MODULE

2.4 Module ngx http auth basic module

2.4.1 Summary . 60
2.4.2 Example Configuration 60
2.4.3 Directives . 60

auth basic . 60
auth basic user file . 60

2.4.1 Summary

The ngx_http_auth_basic_module module allows limiting access to
resources by validating the user name and password using the “HTTP Basic
Authentication” protocol.

Access can also be limited by address, by the result of subrequest, or
by JWT. Simultaneous limitation of access by address and by password is
controlled by the satisfy directive.

2.4.2 Example Configuration

location / {
auth_basic "closed site";
auth_basic_user_file conf/htpasswd;

}

2.4.3 Directives

auth basic

Syntax: auth_basic string | off;

Default off

Context: http, server, location, limit except

Enables validation of user name and password using the “HTTP Basic
Authentication” protocol. The specified parameter is used as a realm.
Parameter value can contain variables (1.3.10, 1.2.7). The special value off
allows cancelling the effect of the auth_basic directive inherited from the
previous configuration level.

auth basic user file

Syntax: auth_basic_user_file file;

Default —

Context: http, server, location, limit except

Specifies a file that keeps user names and passwords, in the following format:

comment
name1:password1
name2:password2:comment

Nginx, Inc. p.60 of 379

CHAPTER 2. HTTP SERVER MODULES 2.4. MODULE NGX HTTP AUTH BASIC MODULE

name3:password3

The file name can contain variables.
The following password types are supported:

• encrypted with the crypt function; can be generated using the
“htpasswd” utility from the Apache HTTP Server distribution or the
“openssl passwd” command;

• hashed with the Apache variant of the MD5-based password algorithm
(apr1); can be generated with the same tools;

• specified by the “{scheme}data” syntax (1.0.3+) as described in RFC
2307; currently implemented schemes include PLAIN (an example one,
should not be used), SHA (1.3.13) (plain SHA-1 hashing, should not be
used) and SSHA (salted SHA-1 hashing, used by some software packages,
notably OpenLDAP and Dovecot).

Support for SHA scheme was added only to aid in migration from other
web servers. It should not be used for new passwords, since unsalted
SHA-1 hashing that it employs is vulnerable to rainbow table attacks.

Nginx, Inc. p.61 of 379

http://tools.ietf.org/html/rfc2307#section-5.3
http://tools.ietf.org/html/rfc2307#section-5.3
http://en.wikipedia.org/wiki/Rainbow_attack

CHAPTER 2. HTTP SERVER MODULES 2.5. MODULE NGX HTTP AUTH JWT MODULE

2.5 Module ngx http auth jwt module

2.5.1 Summary . 62
2.5.2 Example Configuration 62
2.5.3 Directives . 62

auth jwt . 62
auth jwt key file . 63

2.5.4 Embedded Variables . 63

2.5.1 Summary

The ngx_http_auth_jwt_module module (1.11.3) implements client
authorization by validating the provided JSON Web Token (JWT) using the
specified keys. JWT claims must be encoded in a JSON Web Signature (JWS)
structure. The module can be used for OpenID Connect authentication.

The module may be combined with other access modules, such as
ngx http access module, ngx http auth basic module, and ngx http auth -
request module, via the satisfy directive.

This module is available as part of our commercial subscription.

2.5.2 Example Configuration

location / {
auth_jwt "closed site";
auth_jwt_key_file conf/keys.json;

}

2.5.3 Directives

auth jwt

Syntax: auth_jwt string [token=$variable] | off;

Default off

Context: http, server, location

Enables validation of JSON Web Token. The specified string is used as a
realm. Parameter value can contain variables.

The optional token argument specifies a variable that contains JSON Web
Token. By default, JWT is passed in the Authorization header as a Bearer
Token. JWT may be also passed as a cookie or a part of a query string:

auth_jwt "closed site" token=$cookie_auth_token;

The special value off cancels the effect of the auth_jwt directive
inherited from the previous configuration level.

Nginx, Inc. p.62 of 379

https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7515
http://openid.net/specs/openid-connect-core-1_0.html
http://nginx.com/products/
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6750

CHAPTER 2. HTTP SERVER MODULES 2.5. MODULE NGX HTTP AUTH JWT MODULE

auth jwt key file

Syntax: auth_jwt_key_file file;

Default —

Context: http, server, location

Specifies a file in JSON Web Key Set format for validating JWT signature.
Parameter value can contain variables.

2.5.4 Embedded Variables

The ngx_http_auth_jwt_module module supports embedded vari-
ables.

Variables that return JWT claims:

$jwt claim aud
the aud (audience) claim

$jwt claim email
the email claim

$jwt claim exp
the exp (expiration time) claim

$jwt claim iat
the iat (issued at) claim

$jwt claim iss
the issuer of the claim

$jwt claim jti
the JWT ID

$jwt claim nbf
the nbf (not-before time) claim

$jwt claim sub
the subject of the JWT

Variables that return parameters of JOSE header:

$jwt header alg
the alg (algorithm) header parameter

$jwt header cty
the cty (content type) header parameter

$jwt header enc
the enc (encryption algorithm) header parameter

$jwt header kid
the kid (key ID) header parameter

$jwt header typ
the typ (type) header parameter

Nginx, Inc. p.63 of 379

https://tools.ietf.org/html/rfc7517#section-5
https://tools.ietf.org/html/rfc7519#section-4
https://tools.ietf.org/html/rfc7515#section-4

CHAPTER 2. HTTP SERVER MODULES 2.6. MODULE NGX HTTP AUTH REQUEST MODULE

2.6 Module ngx http auth request module

2.6.1 Summary . 64
2.6.2 Example Configuration 64
2.6.3 Directives . 64

auth request . 64
auth request set . 65

2.6.1 Summary

The ngx_http_auth_request_module module (1.5.4+) implements
client authorization based on the result of a subrequest. If the subrequest
returns a 2xx response code, the access is allowed. If it returns 401 or 403, the
access is denied with the corresponding error code. Any other response code
returned by the subrequest is considered an error.

For the 401 error, the client also receives the WWW-Authenticate header
from the subrequest response.

This module is not built by default, it should be enabled with the
--with-http_auth_request_module configuration parameter.

The module may be combined with other access modules, such as ngx -
http access module, ngx http auth basic module, and ngx http auth jwt -
module, via the satisfy directive.

Before version 1.7.3, responses to authorization subrequests could not be
cached (using proxy cache, proxy store, etc.).

2.6.2 Example Configuration

location /private/ {
auth_request /auth;
...

}

location = /auth {
proxy_pass ...
proxy_pass_request_body off;
proxy_set_header Content-Length "";
proxy_set_header X-Original-URI $request_uri;

}

2.6.3 Directives

auth request

Syntax: auth_request uri | off;

Default off

Context: http, server, location

Nginx, Inc. p.64 of 379

CHAPTER 2. HTTP SERVER MODULES 2.6. MODULE NGX HTTP AUTH REQUEST MODULE

Enables authorization based on the result of a subrequest and sets the URI
to which the subrequest will be sent.

auth request set

Syntax: auth_request_set variable value;

Default —

Context: http, server, location

Sets the request variable to the given value after the authorization request
completes. The value may contain variables from the authorization request,
such as $upstream http *.

Nginx, Inc. p.65 of 379

CHAPTER 2. HTTP SERVER MODULES 2.7. MODULE NGX HTTP AUTOINDEX MODULE

2.7 Module ngx http autoindex module

2.7.1 Summary . 66
2.7.2 Example Configuration 66
2.7.3 Directives . 66

autoindex . 66
autoindex exact size . 66
autoindex format . 66
autoindex localtime . 67

2.7.1 Summary

The ngx_http_autoindex_module module processes requests ending
with the slash character (‘/’) and produces a directory listing. Usually a
request is passed to the ngx_http_autoindex_module module when the
ngx http index module module cannot find an index file.

2.7.2 Example Configuration

location / {
autoindex on;

}

2.7.3 Directives

autoindex

Syntax: autoindex on | off;

Default off

Context: http, server, location

Enables or disables the directory listing output.

autoindex exact size

Syntax: autoindex_exact_size on | off;

Default on

Context: http, server, location

For the HTML format, specifies whether exact file sizes should be output in
the directory listing, or rather rounded to kilobytes, megabytes, and gigabytes.

autoindex format

Syntax: autoindex_format html | xml | json | jsonp;

Default html

Context: http, server, location
This directive appeared in version 1.7.9.

Nginx, Inc. p.66 of 379

CHAPTER 2. HTTP SERVER MODULES 2.7. MODULE NGX HTTP AUTOINDEX MODULE

Sets the format of a directory listing.
When the JSONP format is used, the name of a callback function is set

with the callback request argument. If the argument is missing or has an
empty value, then the JSON format is used.

The XML output can be transformed using the ngx http xslt module
module.

autoindex localtime

Syntax: autoindex_localtime on | off;

Default off

Context: http, server, location

For the HTML format, specifies whether times in the directory listing
should be output in the local time zone or UTC.

Nginx, Inc. p.67 of 379

CHAPTER 2. HTTP SERVER MODULES 2.8. MODULE NGX HTTP BROWSER MODULE

2.8 Module ngx http browser module

2.8.1 Summary . 68
2.8.2 Example Configuration 68
2.8.3 Directives . 69

ancient browser . 69
ancient browser value 69
modern browser . 69
modern browser value 69

2.8.1 Summary

The ngx_http_browser_module module creates variables whose
values depend on the value of the User-Agent request header field:

$modern browser
equals the value set by the modern browser value directive, if a browser
was identified as modern;

$ancient browser
equals the value set by the ancient browser value directive, if a browser
was identified as ancient;

$msie
equals “1” if a browser was identified as MSIE of any version.

2.8.2 Example Configuration

Choosing an index file:

modern_browser_value "modern.";

modern_browser msie 5.5;
modern_browser gecko 1.0.0;
modern_browser opera 9.0;
modern_browser safari 413;
modern_browser konqueror 3.0;

index index.${modern_browser}html index.html;

Redirection for old browsers:

modern_browser msie 5.0;
modern_browser gecko 0.9.1;
modern_browser opera 8.0;
modern_browser safari 413;
modern_browser konqueror 3.0;

modern_browser unlisted;

ancient_browser Links Lynx netscape4;

if ($ancient_browser) {
rewrite ^ /ancient.html;

}

Nginx, Inc. p.68 of 379

CHAPTER 2. HTTP SERVER MODULES 2.8. MODULE NGX HTTP BROWSER MODULE

2.8.3 Directives

ancient browser

Syntax: ancient_browser string . . . ;

Default —

Context: http, server, location

If any of the specified substrings is found in the User-Agent request
header field, the browser will be considered ancient. The special string
“netscape4” corresponds to the regular expression “ˆMozilla/[1-4]”.

ancient browser value

Syntax: ancient_browser_value string;

Default 1

Context: http, server, location

Sets a value for the $ancient browser variables.

modern browser

Syntax: modern_browser browser version;

Syntax: modern_browser unlisted;

Default —

Context: http, server, location

Specifies a version starting from which a browser is considered modern. A
browser can be any one of the following: msie, gecko (browsers based on
Mozilla), opera, safari, or konqueror.

Versions can be specified in the following formats: X, X.X, X.X.X, or
X.X.X.X. The maximum values for each of the format are 4000, 4000.99,
4000.99.99, and 4000.99.99.99, respectively.

The special value unlisted specifies to consider a browser as modern if
it was not listed by the modern_browser and ancient browser directives.
Otherwise such a browser is considered ancient. If a request does not provide
the User-Agent field in the header, the browser is treated as not being listed.

modern browser value

Syntax: modern_browser_value string;

Default 1

Context: http, server, location

Sets a value for the $modern browser variables.

Nginx, Inc. p.69 of 379

CHAPTER 2. HTTP SERVER MODULES 2.9. MODULE NGX HTTP CHARSET MODULE

2.9 Module ngx http charset module

2.9.1 Summary . 70
2.9.2 Example Configuration 70
2.9.3 Directives . 70

charset . 70
charset map . 71
charset types . 72
override charset . 72
source charset . 72

2.9.1 Summary

The ngx_http_charset_module module adds the specified charset
to the Content-Type response header field. In addition, the module can
convert data from one charset to another, with some limitations:

• conversion is performed one way — from server to client,

• only single-byte charsets can be converted

• or single-byte charsets to/from UTF-8.

2.9.2 Example Configuration

include conf/koi-win;

charset windows-1251;
source_charset koi8-r;

2.9.3 Directives

charset

Syntax: charset charset | off;

Default off

Context: http, server, location, if in location

Adds the specified charset to the Content-Type response header field.
If this charset is different from the charset specified in the source charset
directive, a conversion is performed.

The parameter off cancels the addition of charset to the Content-Type
response header field.

A charset can be defined with a variable:

charset $charset;

Nginx, Inc. p.70 of 379

CHAPTER 2. HTTP SERVER MODULES 2.9. MODULE NGX HTTP CHARSET MODULE

In such a case, all possible values of a variable need to be present in the
configuration at least once in the form of the charset map, charset, or source -
charset directives. For utf-8, windows-1251, and koi8-r charsets, it is
sufficient to include the files conf/koi-win, conf/koi-utf, and conf¬
/win-utf into configuration. For other charsets, simply making a fictitious
conversion table works, for example:

charset_map iso-8859-5 _ { }

In addition, a charset can be set in the X-Accel-Charset response
header field. This capability can be disabled using the proxy ignore -
headers, fastcgi ignore headers, uwsgi ignore headers, and scgi ignore headers
directives.

charset map

Syntax: charset_map charset1 charset2 { . . . }
Default —

Context: http

Describes the conversion table from one charset to another. A reverse
conversion table is built using the same data. Character codes are given in
hexadecimal. Missing characters in the range 80-FF are replaced with “?”.
When converting from UTF-8, characters missing in a one-byte charset are
replaced with “&#XXXX;”.

Example:

charset_map koi8-r windows-1251 {
C0 FE ; # small yu
C1 E0 ; # small a
C2 E1 ; # small b
C3 F6 ; # small ts
...

}

When describing a conversion table to UTF-8, codes for the UTF-8 charset
should be given in the second column, for example:

charset_map koi8-r utf-8 {
C0 D18E ; # small yu
C1 D0B0 ; # small a
C2 D0B1 ; # small b
C3 D186 ; # small ts
...

}

Full conversion tables from koi8-r to windows-1251, and from koi8-r
and windows-1251 to utf-8 are provided in the distribution files conf/¬
koi-win, conf/koi-utf, and conf/win-utf.

Nginx, Inc. p.71 of 379

CHAPTER 2. HTTP SERVER MODULES 2.9. MODULE NGX HTTP CHARSET MODULE

charset types

Syntax: charset_types mime-type . . . ;

Default text/html text/xml text/plain text/vnd.wap.wml

application/javascript application/rss+xml

Context: http, server, location
This directive appeared in version 0.7.9.

Enables module processing in responses with the specified MIME types in
addition to “text/html”. The special value “*” matches any MIME type
(0.8.29).

Until version 1.5.4, “application/x-javascript” was used as the
default MIME type instead of “application/javascript”.

override charset

Syntax: override_charset on | off;

Default off

Context: http, server, location, if in location

Determines whether a conversion should be performed for answers received
from a proxied or a FastCGI/uwsgi/SCGI server when the answers already
carry a charset in the Content-Type response header field. If conversion is
enabled, a charset specified in the received response is used as a source charset.

It should be noted that if a response is received in a subrequest then the
conversion from the response charset to the main request charset is always
performed, regardless of the override_charset directive setting.

source charset

Syntax: source_charset charset;

Default —

Context: http, server, location, if in location

Defines the source charset of a response. If this charset is different from
the charset specified in the charset directive, a conversion is performed.

Nginx, Inc. p.72 of 379

CHAPTER 2. HTTP SERVER MODULES 2.10. MODULE NGX HTTP DAV MODULE

2.10 Module ngx http dav module

2.10.1 Summary . 73
2.10.2 Example Configuration 73
2.10.3 Directives . 73

dav access . 73
dav methods . 74
create full put path . 74
min delete depth . 74

2.10.1 Summary

The ngx_http_dav_module module is intended for file management
automation via the WebDAV protocol. The module processes HTTP and
WebDAV methods PUT, DELETE, MKCOL, COPY, and MOVE.

This module is not built by default, it should be enabled with the
--with-http_dav_module configuration parameter.

WebDAV clients that require additional WebDAV methods to operate will
not work with this module.

2.10.2 Example Configuration

location / {
root /data/www;

client_body_temp_path /data/client_temp;

dav_methods PUT DELETE MKCOL COPY MOVE;

create_full_put_path on;
dav_access group:rw all:r;

limit_except GET {
allow 192.168.1.0/32;
deny all;

}
}

2.10.3 Directives

dav access

Syntax: dav_access users:permissions . . . ;

Default user:rw

Context: http, server, location

Sets access permissions for newly created files and directories, e.g.:

dav_access user:rw group:rw all:r;

Nginx, Inc. p.73 of 379

CHAPTER 2. HTTP SERVER MODULES 2.10. MODULE NGX HTTP DAV MODULE

If any group or all access permissions are specified then user
permissions may be omitted:

dav_access group:rw all:r;

dav methods

Syntax: dav_methods off | method . . . ;

Default off

Context: http, server, location

Allows the specified HTTP and WebDAV methods. The parameter off
denies all methods processed by this module. The following methods are
supported: PUT, DELETE, MKCOL, COPY, and MOVE.

A file uploaded with the PUT method is first written to a temporary file,
and then the file is renamed. Starting from version 0.8.9, temporary files and
the persistent store can be put on different file systems. However, be aware
that in this case a file is copied across two file systems instead of the cheap
renaming operation. It is thus recommended that for any given location both
saved files and a directory holding temporary files, set by the client body -
temp path directive, are put on the same file system.

When creating a file with the PUT method, it is possible to specify the
modification date by passing it in the Date header field.

create full put path

Syntax: create_full_put_path on | off;

Default off

Context: http, server, location

The WebDAV specification only allows creating files in already existing
directories. This directive allows creating all needed intermediate directories.

min delete depth

Syntax: min_delete_depth number;

Default 0

Context: http, server, location

Allows the DELETE method to remove files provided that the number of
elements in a request path is not less than the specified number. For example,
the directive

min_delete_depth 4;

allows removing files on requests

/users/00/00/name
/users/00/00/name/pic.jpg
/users/00/00/page.html

Nginx, Inc. p.74 of 379

CHAPTER 2. HTTP SERVER MODULES 2.10. MODULE NGX HTTP DAV MODULE

and denies the removal of

/users/00/00

Nginx, Inc. p.75 of 379

CHAPTER 2. HTTP SERVER MODULES 2.11. MODULE NGX HTTP EMPTY GIF MODULE

2.11 Module ngx http empty gif module

2.11.1 Summary . 76
2.11.2 Example Configuration 76
2.11.3 Directives . 76

empty gif . 76

2.11.1 Summary

The ngx_http_empty_gif_module module emits single-pixel trans-
parent GIF.

2.11.2 Example Configuration

location = /_.gif {
empty_gif;

}

2.11.3 Directives

empty gif

Syntax: empty_gif;

Default —

Context: location

Turns on module processing in a surrounding location.

Nginx, Inc. p.76 of 379

CHAPTER 2. HTTP SERVER MODULES 2.12. MODULE NGX HTTP F4F MODULE

2.12 Module ngx http f4f module

2.12.1 Summary . 77
2.12.2 Example Configuration 77
2.12.3 Directives . 77

f4f . 77
f4f buffer size . 77

2.12.1 Summary

The ngx_http_f4f_module module provides server-side support for
Adobe HTTP Dynamic Streaming (HDS).

This module implements handling of HTTP Dynamic Streaming requests
in the “/videoSeg1-Frag1” form — extracting the needed fragment from
the videoSeg1.f4f file using the videoSeg1.f4x index file. This module
is an alternative to the Adobe’s f4f module (HTTP Origin Module) for Apache.

Usual pre-processing with Adobe’s f4fpackager is required, see relevant
documentation for details.

This module is available as part of our commercial subscription.

2.12.2 Example Configuration

location /video/ {
f4f;
...

}

2.12.3 Directives

f4f

Syntax: f4f;

Default —

Context: location

Turns on module processing in the surrounding location.

f4f buffer size

Syntax: f4f_buffer_size size;

Default 512k

Context: http, server, location

Sets the size of the buffer used for reading the .f4x index file.

Nginx, Inc. p.77 of 379

http://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.13. MODULE NGX HTTP FASTCGI MODULE

2.13 Module ngx http fastcgi module

2.13.1 Summary . 79
2.13.2 Example Configuration 79
2.13.3 Directives . 79

fastcgi bind . 79
fastcgi buffer size . 80
fastcgi buffering . 80
fastcgi buffers . 80
fastcgi busy buffers size 80
fastcgi cache . 81
fastcgi cache bypass . 81
fastcgi cache key . 81
fastcgi cache lock . 81
fastcgi cache lock age 82
fastcgi cache lock timeout 82
fastcgi cache methods 82
fastcgi cache min uses 82
fastcgi cache path . 83
fastcgi cache purge . 84
fastcgi cache revalidate 85
fastcgi cache use stale 85
fastcgi cache valid . 85
fastcgi catch stderr . 86
fastcgi connect timeout 87
fastcgi force ranges . 87
fastcgi hide header . 87
fastcgi ignore client abort 87
fastcgi ignore headers 88
fastcgi index . 88
fastcgi intercept errors 88
fastcgi keep conn . 89
fastcgi limit rate . 89
fastcgi max temp file size 89
fastcgi next upstream 89
fastcgi next upstream timeout 90
fastcgi next upstream tries 91
fastcgi no cache . 91
fastcgi param . 91
fastcgi pass . 92
fastcgi pass header . 92
fastcgi pass request body 92
fastcgi pass request headers 93
fastcgi read timeout . 93
fastcgi request buffering 93
fastcgi send lowat . 93

Nginx, Inc. p.78 of 379

CHAPTER 2. HTTP SERVER MODULES 2.13. MODULE NGX HTTP FASTCGI MODULE

fastcgi send timeout . 93
fastcgi split path info 94
fastcgi store . 94
fastcgi store access . 95
fastcgi temp file write size 95
fastcgi temp path . 95

2.13.4 Parameters Passed to a FastCGI Server 96
2.13.5 Embedded Variables . 96

2.13.1 Summary

The ngx_http_fastcgi_module module allows passing requests to a
FastCGI server.

2.13.2 Example Configuration

location / {
fastcgi_pass localhost:9000;
fastcgi_index index.php;

fastcgi_param SCRIPT_FILENAME /home/www/scripts/php$fastcgi_script_name;
fastcgi_param QUERY_STRING $query_string;
fastcgi_param REQUEST_METHOD $request_method;
fastcgi_param CONTENT_TYPE $content_type;
fastcgi_param CONTENT_LENGTH $content_length;

}

2.13.3 Directives

fastcgi bind

Syntax: fastcgi_bind address [transparent] | off;

Default —

Context: http, server, location
This directive appeared in version 0.8.22.

Makes outgoing connections to a FastCGI server originate from the
specified local IP address with an optional port (1.11.2). Parameter value can
contain variables (1.3.12). The special value off (1.3.12) cancels the effect of
the fastcgi_bind directive inherited from the previous configuration level,
which allows the system to auto-assign the local IP address and port.

The transparent parameter (1.11.0) allows outgoing connections to a
FastCGI server originate from a non-local IP address, for example, from a real
IP address of a client:

fastcgi_bind $remote_addr transparent;

In order for this parameter to work, it is necessary to run nginx worker
processes with the superuser privileges and configure kernel routing table to
intercept network traffic from the FastCGI server.

Nginx, Inc. p.79 of 379

CHAPTER 2. HTTP SERVER MODULES 2.13. MODULE NGX HTTP FASTCGI MODULE

fastcgi buffer size

Syntax: fastcgi_buffer_size size;

Default 4k|8k

Context: http, server, location

Sets the size of the buffer used for reading the first part of the response
received from the FastCGI server. This part usually contains a small response
header. By default, the buffer size is equal to one memory page. This is either
4K or 8K, depending on a platform. It can be made smaller, however.

fastcgi buffering

Syntax: fastcgi_buffering on | off;

Default on

Context: http, server, location
This directive appeared in version 1.5.6.

Enables or disables buffering of responses from the FastCGI server.
When buffering is enabled, nginx receives a response from the FastCGI

server as soon as possible, saving it into the buffers set by the fastcgi buffer -
size and fastcgi buffers directives. If the whole response does not fit into
memory, a part of it can be saved to a temporary file on the disk. Writing
to temporary files is controlled by the fastcgi max temp file size and fastcgi -
temp file write size directives.

When buffering is disabled, the response is passed to a client synchronously,
immediately as it is received. nginx will not try to read the whole response
from the FastCGI server. The maximum size of the data that nginx can receive
from the server at a time is set by the fastcgi buffer size directive.

Buffering can also be enabled or disabled by passing “yes” or “no” in the
X-Accel-Buffering response header field. This capability can be disabled
using the fastcgi ignore headers directive.

fastcgi buffers

Syntax: fastcgi_buffers number size;

Default 8 4k|8k

Context: http, server, location

Sets the number and size of the buffers used for reading a response from
the FastCGI server, for a single connection. By default, the buffer size is equal
to one memory page. This is either 4K or 8K, depending on a platform.

fastcgi busy buffers size

Syntax: fastcgi_busy_buffers_size size;

Default 8k|16k

Context: http, server, location

Nginx, Inc. p.80 of 379

CHAPTER 2. HTTP SERVER MODULES 2.13. MODULE NGX HTTP FASTCGI MODULE

When buffering of responses from the FastCGI server is enabled, limits the
total size of buffers that can be busy sending a response to the client while the
response is not yet fully read. In the meantime, the rest of the buffers can be
used for reading the response and, if needed, buffering part of the response to
a temporary file. By default, size is limited by the size of two buffers set by
the fastcgi buffer size and fastcgi buffers directives.

fastcgi cache

Syntax: fastcgi_cache zone | off;

Default off

Context: http, server, location

Defines a shared memory zone used for caching. The same zone can be
used in several places. Parameter value can contain variables (1.7.9). The off
parameter disables caching inherited from the previous configuration level.

fastcgi cache bypass

Syntax: fastcgi_cache_bypass string . . . ;

Default —

Context: http, server, location

Defines conditions under which the response will not be taken from a cache.
If at least one value of the string parameters is not empty and is not equal to
“0” then the response will not be taken from the cache:

fastcgi_cache_bypass $cookie_nocache $arg_nocache$arg_comment;
fastcgi_cache_bypass $http_pragma $http_authorization;

Can be used along with the fastcgi no cache directive.

fastcgi cache key

Syntax: fastcgi_cache_key string;

Default —

Context: http, server, location

Defines a key for caching, for example

fastcgi_cache_key localhost:9000$request_uri;

fastcgi cache lock

Syntax: fastcgi_cache_lock on | off;

Default off

Context: http, server, location
This directive appeared in version 1.1.12.

Nginx, Inc. p.81 of 379

CHAPTER 2. HTTP SERVER MODULES 2.13. MODULE NGX HTTP FASTCGI MODULE

When enabled, only one request at a time will be allowed to populate a new
cache element identified according to the fastcgi cache key directive by passing
a request to a FastCGI server. Other requests of the same cache element will
either wait for a response to appear in the cache or the cache lock for this
element to be released, up to the time set by the fastcgi cache lock timeout
directive.

fastcgi cache lock age

Syntax: fastcgi_cache_lock_age time;

Default 5s

Context: http, server, location
This directive appeared in version 1.7.8.

If the last request passed to the FastCGI server for populating a new cache
element has not completed for the specified time, one more request may be
passed to the FastCGI server.

fastcgi cache lock timeout

Syntax: fastcgi_cache_lock_timeout time;

Default 5s

Context: http, server, location
This directive appeared in version 1.1.12.

Sets a timeout for fastcgi cache lock. When the time expires, the request
will be passed to the FastCGI server, however, the response will not be cached.

Before 1.7.8, the response could be cached.

fastcgi cache methods

Syntax: fastcgi_cache_methods GET | HEAD | POST . . . ;

Default GET HEAD

Context: http, server, location
This directive appeared in version 0.7.59.

If the client request method is listed in this directive then the response will
be cached. “GET” and “HEAD” methods are always added to the list, though
it is recommended to specify them explicitly. See also the fastcgi no cache
directive.

fastcgi cache min uses

Syntax: fastcgi_cache_min_uses number;

Default 1

Context: http, server, location

Sets the number of requests after which the response will be cached.

Nginx, Inc. p.82 of 379

CHAPTER 2. HTTP SERVER MODULES 2.13. MODULE NGX HTTP FASTCGI MODULE

fastcgi cache path

Syntax: fastcgi_cache_path path [levels=levels]

[use_temp_path=on|off] keys_zone=name:size [inactive=time]

[max_size=size] [manager_files=number] [manager_sleep=time]

[manager_threshold=time] [loader_files=number]

[loader_sleep=time] [loader_threshold=time]

[purger=on|off] [purger_files=number] [purger_sleep=time]

[purger_threshold=time];

Default —

Context: http

Sets the path and other parameters of a cache. Cache data are stored in
files. Both the key and file name in a cache are a result of applying the MD5
function to the proxied URL.

The levels parameter defines hierarchy levels of a cache: from 1 to 3,
each level accepts values 1 or 2. For example, in the following configuration

fastcgi_cache_path /data/nginx/cache levels=1:2 keys_zone=one:10m;

file names in a cache will look like this:

/data/nginx/cache/c/29/b7f54b2df7773722d382f4809d65029c

A cached response is first written to a temporary file, and then the file is
renamed. Starting from version 0.8.9, temporary files and the cache can be put
on different file systems. However, be aware that in this case a file is copied
across two file systems instead of the cheap renaming operation. It is thus
recommended that for any given location both cache and a directory holding
temporary files are put on the same file system. A directory for temporary files
is set based on the use_temp_path parameter (1.7.10). If this parameter
is omitted or set to the value on, the directory set by the fastcgi temp -
path directive for the given location will be used. If the value is set to off,
temporary files will be put directly in the cache directory.

In addition, all active keys and information about data are stored in a
shared memory zone, whose name and size are configured by the keys_zone
parameter. One megabyte zone can store about 8 thousand keys.

Cached data that are not accessed during the time specified by the
inactive parameter get removed from the cache regardless of their freshness.
By default, inactive is set to 10 minutes.

The special “cache manager” process monitors the maximum cache
size set by the max_size parameter. When this size is exceeded,
it removes the least recently used data. The data is removed in
iterations configured by manager_files, manager_threshold, and
manager_sleep parameters (1.11.5). During one iteration no more than
manager_files items are deleted (by default, 100). The duration of one
iteration is limited by the manager_threshold parameter (by default, 200

Nginx, Inc. p.83 of 379

CHAPTER 2. HTTP SERVER MODULES 2.13. MODULE NGX HTTP FASTCGI MODULE

milliseconds). Between iterations, a pause configured by the manager_sleep
parameter (by default, 50 milliseconds) is made.

A minute after the start the special “cache loader” process is activated. It
loads information about previously cached data stored on file system into a
cache zone. The loading is also done in iterations. During one iteration no
more than loader_files items are loaded (by default, 100). Besides, the
duration of one iteration is limited by the loader_threshold parameter
(by default, 200 milliseconds). Between iterations, a pause configured by the
loader_sleep parameter (by default, 50 milliseconds) is made.

Additionally, the following parameters are available as part of our
commercial subscription:

purger=on|off
Instructs whether cache entries that match a wildcard key will be
removed from the disk by the cache purger (1.7.12). Setting the
parameter to on (default is off) will activate the “cache purger” process
that permanently iterates through all cache entries and deletes the entries
that match the wildcard key.

purger_files=number
Sets the number of items that will be scanned during one iteration
(1.7.12). By default, purger_files is set to 10.

purger_threshold=number
Sets the duration of one iteration (1.7.12). By default,
purger_threshold is set to 50 milliseconds.

purger_sleep=number
Sets a pause between iterations (1.7.12). By default, purger_sleep is
set to 50 milliseconds.

fastcgi cache purge

Syntax: fastcgi_cache_purgestring . . . ;

Default —

Context: http, server, location
This directive appeared in version 1.5.7.

Defines conditions under which the request will be considered a cache purge
request. If at least one value of the string parameters is not empty and
is not equal to “0” then the cache entry with a corresponding cache key is
removed. The result of successful operation is indicated by returning the 204
No Content response.

If the cache key of a purge request ends with an asterisk (“*”), all cache
entries matching the wildcard key will be removed from the cache. However,
these entries will remain on the disk until they are deleted for either inactivity,
or processed by the cache purger (1.7.12), or a client attempts to access them.

Example configuration:

fastcgi_cache_path /data/nginx/cache keys_zone=cache_zone:10m;

Nginx, Inc. p.84 of 379

http://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.13. MODULE NGX HTTP FASTCGI MODULE

map $request_method $purge_method {
PURGE 1;
default 0;

}

server {
...
location / {

fastcgi_pass backend;
fastcgi_cache cache_zone;
fastcgi_cache_key $uri;
fastcgi_cache_purge $purge_method;

}
}

This functionality is available as part of our commercial subscription.

fastcgi cache revalidate

Syntax: fastcgi_cache_revalidate on | off;

Default off

Context: http, server, location
This directive appeared in version 1.5.7.

Enables revalidation of expired cache items using conditional requests with
the If-Modified-Since and If-None-Match header fields.

fastcgi cache use stale

Syntax: fastcgi_cache_use_stale error | timeout | invalid_header
| updating | http_500 | http_503 | http_403 | http_404 | off
. . . ;

Default off

Context: http, server, location

Determines in which cases a stale cached response can be used when an
error occurs during communication with the FastCGI server. The directive’s
parameters match the parameters of the fastcgi next upstream directive.

The error parameter also permits using a stale cached response if a
FastCGI server to process a request cannot be selected.

Additionally, the updating parameter permits using a stale cached
response if it is currently being updated. This allows minimizing the number
of accesses to FastCGI servers when updating cached data.

To minimize the number of accesses to FastCGI servers when populating a
new cache element, the fastcgi cache lock directive can be used.

fastcgi cache valid

Syntax: fastcgi_cache_valid [code . . .] time;

Default —

Context: http, server, location

Nginx, Inc. p.85 of 379

http://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.13. MODULE NGX HTTP FASTCGI MODULE

Sets caching time for different response codes. For example, the following
directives

fastcgi_cache_valid 200 302 10m;
fastcgi_cache_valid 404 1m;

set 10 minutes of caching for responses with codes 200 and 302 and 1 minute
for responses with code 404.

If only caching time is specified

fastcgi_cache_valid 5m;

then only 200, 301, and 302 responses are cached.
In addition, the any parameter can be specified to cache any responses:

fastcgi_cache_valid 200 302 10m;
fastcgi_cache_valid 301 1h;
fastcgi_cache_valid any 1m;

Parameters of caching can also be set directly in the response header. This
has higher priority than setting of caching time using the directive.

• The X-Accel-Expires header field sets caching time of a response in
seconds. The zero value disables caching for a response. If the value
starts with the @ prefix, it sets an absolute time in seconds since Epoch,
up to which the response may be cached.

• If the header does not include the X-Accel-Expires field, parameters
of caching may be set in the header fields Expires or Cache-Control.

• If the header includes the Set-Cookie field, such a response will not
be cached.

• If the header includes the Vary field with the special value “*”, such a
response will not be cached (1.7.7). If the header includes the Vary field
with another value, such a response will be cached taking into account
the corresponding request header fields (1.7.7).

Processing of one or more of these response header fields can be disabled using
the fastcgi ignore headers directive.

fastcgi catch stderr

Syntax: fastcgi_catch_stderr string;

Default —

Context: http, server, location

Sets a string to search for in the error stream of a response received from
a FastCGI server. If the string is found then it is considered that the FastCGI
server has returned an invalid response. This allows handling application errors
in nginx, for example:

Nginx, Inc. p.86 of 379

CHAPTER 2. HTTP SERVER MODULES 2.13. MODULE NGX HTTP FASTCGI MODULE

location /php {
fastcgi_pass backend:9000;
...
fastcgi_catch_stderr "PHP Fatal error";
fastcgi_next_upstream error timeout invalid_header;

}

fastcgi connect timeout

Syntax: fastcgi_connect_timeout time;

Default 60s

Context: http, server, location

Defines a timeout for establishing a connection with a FastCGI server. It
should be noted that this timeout cannot usually exceed 75 seconds.

fastcgi force ranges

Syntax: fastcgi_force_ranges on | off;

Default off

Context: http, server, location
This directive appeared in version 1.7.7.

Enables byte-range support for both cached and uncached responses from
the FastCGI server regardless of the Accept-Ranges field in these responses.

fastcgi hide header

Syntax: fastcgi_hide_header field;

Default —

Context: http, server, location

By default, nginx does not pass the header fields Status and
X-Accel-... from the response of a FastCGI server to a client. The
fastcgi_hide_header directive sets additional fields that will not be
passed. If, on the contrary, the passing of fields needs to be permitted, the
fastcgi pass header directive can be used.

fastcgi ignore client abort

Syntax: fastcgi_ignore_client_abort on | off;

Default off

Context: http, server, location

Determines whether the connection with a FastCGI server should be closed
when a client closes the connection without waiting for a response.

Nginx, Inc. p.87 of 379

CHAPTER 2. HTTP SERVER MODULES 2.13. MODULE NGX HTTP FASTCGI MODULE

fastcgi ignore headers

Syntax: fastcgi_ignore_headers field . . . ;

Default —

Context: http, server, location

Disables processing of certain response header fields from
the FastCGI server. The following fields can be ignored:
X-Accel-Redirect, X-Accel-Expires, X-Accel-Limit-Rate
(1.1.6), X-Accel-Buffering (1.1.6), X-Accel-Charset (1.1.6),
Expires, Cache-Control, Set-Cookie (0.8.44), and Vary (1.7.7).

If not disabled, processing of these header fields has the following effect:

• X-Accel-Expires, Expires, Cache-Control, Set-Cookie, and
Vary set the parameters of response caching;

• X-Accel-Redirect performs an internal redirect to the specified URI;

• X-Accel-Limit-Rate sets the rate limit for transmission of a
response to a client;

• X-Accel-Buffering enables or disables buffering of a response;

• X-Accel-Charset sets the desired charset of a response.

fastcgi index

Syntax: fastcgi_index name;

Default —

Context: http, server, location

Sets a file name that will be appended after a URI that ends with a slash, in
the value of the $fastcgi script name variable. For example, with these settings

fastcgi_index index.php;
fastcgi_param SCRIPT_FILENAME /home/www/scripts/php$fastcgi_script_name;

and the“/page.php” request, the SCRIPT_FILENAME parameter will be
equal to“/home/www/scripts/php/page.php”, and with the“/” request
it will be equal to “/home/www/scripts/php/index.php”.

fastcgi intercept errors

Syntax: fastcgi_intercept_errors on | off;

Default off

Context: http, server, location

Determines whether FastCGI server responses with codes greater than or
equal to 300 should be passed to a client or be intercepted and redirected to
nginx for processing with the error page directive.

Nginx, Inc. p.88 of 379

CHAPTER 2. HTTP SERVER MODULES 2.13. MODULE NGX HTTP FASTCGI MODULE

fastcgi keep conn

Syntax: fastcgi_keep_conn on | off;

Default off

Context: http, server, location
This directive appeared in version 1.1.4.

By default, a FastCGI server will close a connection right after sending
the response. However, when this directive is set to the value on, nginx will
instruct a FastCGI server to keep connections open. This is necessary, in
particular, for keepalive connections to FastCGI servers to function.

fastcgi limit rate

Syntax: fastcgi_limit_rate rate;

Default 0

Context: http, server, location
This directive appeared in version 1.7.7.

Limits the speed of reading the response from the FastCGI server. The
rate is specified in bytes per second. The zero value disables rate limiting. The
limit is set per a request, and so if nginx simultaneously opens two connections
to the FastCFI server, the overall rate will be twice as much as the specified
limit. The limitation works only if buffering of responses from the FastCGI
server is enabled.

fastcgi max temp file size

Syntax: fastcgi_max_temp_file_size size;

Default 1024m

Context: http, server, location

When buffering of responses from the FastCGI server is enabled, and the
whole response does not fit into the buffers set by the fastcgi buffer size and
fastcgi buffers directives, a part of the response can be saved to a temporary
file. This directive sets the maximum size of the temporary file. The size of
data written to the temporary file at a time is set by the fastcgi temp file -
write size directive.

The zero value disables buffering of responses to temporary files.

This restriction does not apply to responses that will be cached or stored
on disk.

fastcgi next upstream

Syntax: fastcgi_next_upstream error | timeout | invalid_header |
http_500 | http_503 | http_403 | http_404 | non_idempotent |
off . . . ;

Default error timeout

Context: http, server, location

Nginx, Inc. p.89 of 379

CHAPTER 2. HTTP SERVER MODULES 2.13. MODULE NGX HTTP FASTCGI MODULE

Specifies in which cases a request should be passed to the next server:

error
an error occurred while establishing a connection with the server, passing
a request to it, or reading the response header;

timeout
a timeout has occurred while establishing a connection with the server,
passing a request to it, or reading the response header;

invalid_header
a server returned an empty or invalid response;

http_500
a server returned a response with the code 500;

http_503
a server returned a response with the code 503;

http_403
a server returned a response with the code 403;

http_404
a server returned a response with the code 404;

non_idempotent
normally, requests with a non-idempotent method (POST, LOCK, PATCH)
are not passed to the next server if a request has been sent to an
upstream server (1.9.13); enabling this option explicitly allows retrying
such requests;

off
disables passing a request to the next server.

One should bear in mind that passing a request to the next server is only
possible if nothing has been sent to a client yet. That is, if an error or timeout
occurs in the middle of the transferring of a response, fixing this is impossible.

The directive also defines what is considered an unsuccessful attempt
of communication with a server. The cases of error, timeout and
invalid_header are always considered unsuccessful attempts, even if they
are not specified in the directive. The cases of http_500 and http_503
are considered unsuccessful attempts only if they are specified in the directive.
The cases of http_403 and http_404 are never considered unsuccessful
attempts.

Passing a request to the next server can be limited by the number of tries
and by time.

fastcgi next upstream timeout

Syntax: fastcgi_next_upstream_timeout time;

Default 0

Context: http, server, location
This directive appeared in version 1.7.5.

Limits the time during which a request can be passed to the next server.
The 0 value turns off this limitation.

Nginx, Inc. p.90 of 379

http://tools.ietf.org/html/rfc7231#section-4.2.2

CHAPTER 2. HTTP SERVER MODULES 2.13. MODULE NGX HTTP FASTCGI MODULE

fastcgi next upstream tries

Syntax: fastcgi_next_upstream_tries number;

Default 0

Context: http, server, location
This directive appeared in version 1.7.5.

Limits the number of possible tries for passing a request to the next server.
The 0 value turns off this limitation.

fastcgi no cache

Syntax: fastcgi_no_cache string . . . ;

Default —

Context: http, server, location

Defines conditions under which the response will not be saved to a cache.
If at least one value of the string parameters is not empty and is not equal to
“0” then the response will not be saved:

fastcgi_no_cache $cookie_nocache $arg_nocache$arg_comment;
fastcgi_no_cache $http_pragma $http_authorization;

Can be used along with the fastcgi cache bypass directive.

fastcgi param

Syntax: fastcgi_param parameter value [if_not_empty];

Default —

Context: http, server, location

Sets a parameter that should be passed to the FastCGI server. The
value can contain text, variables, and their combination. These directives are
inherited from the previous level if and only if there are no fastcgi_param
directives defined on the current level.

The following example shows the minimum required settings for PHP:

fastcgi_param SCRIPT_FILENAME /home/www/scripts/php$fastcgi_script_name;
fastcgi_param QUERY_STRING $query_string;

The SCRIPT_FILENAME parameter is used in PHP for determining the
script name, and the QUERY_STRING parameter is used to pass request
parameters.

For scripts that process POST requests, the following three parameters are
also required:

fastcgi_param REQUEST_METHOD $request_method;
fastcgi_param CONTENT_TYPE $content_type;
fastcgi_param CONTENT_LENGTH $content_length;

Nginx, Inc. p.91 of 379

CHAPTER 2. HTTP SERVER MODULES 2.13. MODULE NGX HTTP FASTCGI MODULE

If PHP was built with the --enable-force-cgi-redirect configu-
ration parameter, the REDIRECT_STATUS parameter should also be passed
with the value “200”:

fastcgi_param REDIRECT_STATUS 200;

If the directive is specified with if_not_empty (1.1.11) then such a
parameter will not be passed to the server until its value is not empty:

fastcgi_param HTTPS $https if_not_empty;

fastcgi pass

Syntax: fastcgi_pass address;

Default —

Context: location, if in location

Sets the address of a FastCGI server. The address can be specified as a
domain name or IP address, and a port:

fastcgi_pass localhost:9000;

or as a UNIX-domain socket path:

fastcgi_pass unix:/tmp/fastcgi.socket;

If a domain name resolves to several addresses, all of them will be used
in a round-robin fashion. In addition, an address can be specified as a server
group.

fastcgi pass header

Syntax: fastcgi_pass_header field;

Default —

Context: http, server, location

Permits passing otherwise disabled header fields from a FastCGI server to
a client.

fastcgi pass request body

Syntax: fastcgi_pass_request_body on | off;

Default on

Context: http, server, location

Indicates whether the original request body is passed to the FastCGI server.
See also the fastcgi pass request headers directive.

Nginx, Inc. p.92 of 379

CHAPTER 2. HTTP SERVER MODULES 2.13. MODULE NGX HTTP FASTCGI MODULE

fastcgi pass request headers

Syntax: fastcgi_pass_request_headers on | off;

Default on

Context: http, server, location

Indicates whether the header fields of the original request are passed to the
FastCGI server. See also the fastcgi pass request body directive.

fastcgi read timeout

Syntax: fastcgi_read_timeout time;

Default 60s

Context: http, server, location

Defines a timeout for reading a response from the FastCGI server. The
timeout is set only between two successive read operations, not for the
transmission of the whole response. If the FastCGI server does not transmit
anything within this time, the connection is closed.

fastcgi request buffering

Syntax: fastcgi_request_buffering on | off;

Default on

Context: http, server, location
This directive appeared in version 1.7.11.

Enables or disables buffering of a client request body.
When buffering is enabled, the entire request body is read from the client

before sending the request to a FastCGI server.
When buffering is disabled, the request body is sent to the FastCGI server

immediately as it is received. In this case, the request cannot be passed to the
next server if nginx already started sending the request body.

fastcgi send lowat

Syntax: fastcgi_send_lowat size;

Default 0

Context: http, server, location

If the directive is set to a non-zero value, nginx will try to minimize the
number of send operations on outgoing connections to a FastCGI server by
using either NOTE_LOWAT flag of the kqueue method, or the SO_SNDLOWAT
socket option, with the specified size.

This directive is ignored on Linux, Solaris, and Windows.

fastcgi send timeout

Syntax: fastcgi_send_timeout time;

Default 60s

Context: http, server, location

Nginx, Inc. p.93 of 379

CHAPTER 2. HTTP SERVER MODULES 2.13. MODULE NGX HTTP FASTCGI MODULE

Sets a timeout for transmitting a request to the FastCGI server. The
timeout is set only between two successive write operations, not for the
transmission of the whole request. If the FastCGI server does not receive
anything within this time, the connection is closed.

fastcgi split path info

Syntax: fastcgi_split_path_info regex;

Default —

Context: location

Defines a regular expression that captures a value for the $fastcgi path info
variable. The regular expression should have two captures: the first becomes
a value of the $fastcgi script name variable, the second becomes a value of the
$fastcgi path info variable. For example, with these settings

location ~ ^(.+\.php)(.*)$ {
fastcgi_split_path_info ^(.+\.php)(.*)$;
fastcgi_param SCRIPT_FILENAME /path/to/php$fastcgi_script_name;
fastcgi_param PATH_INFO $fastcgi_path_info;

and the“/show.php/article/0001”request, the SCRIPT_FILENAME
parameter will be equal to “/path/to/php/show.php”, and the
PATH_INFO parameter will be equal to “/article/0001”.

fastcgi store

Syntax: fastcgi_store on | off | string;

Default off

Context: http, server, location

Enables saving of files to a disk. The on parameter saves files with paths
corresponding to the directives alias or root. The off parameter disables
saving of files. In addition, the file name can be set explicitly using the string
with variables:

fastcgi_store /data/www$original_uri;

The modification time of files is set according to the received
Last-Modified response header field. The response is first written to a
temporary file, and then the file is renamed. Starting from version 0.8.9,
temporary files and the persistent store can be put on different file systems.
However, be aware that in this case a file is copied across two file systems
instead of the cheap renaming operation. It is thus recommended that for any
given location both saved files and a directory holding temporary files, set by
the fastcgi temp path directive, are put on the same file system.

This directive can be used to create local copies of static unchangeable files,
e.g.:

location /images/ {

Nginx, Inc. p.94 of 379

CHAPTER 2. HTTP SERVER MODULES 2.13. MODULE NGX HTTP FASTCGI MODULE

root /data/www;
error_page 404 = /fetch$uri;

}

location /fetch/ {
internal;

fastcgi_pass backend:9000;
...

fastcgi_store on;
fastcgi_store_access user:rw group:rw all:r;
fastcgi_temp_path /data/temp;

alias /data/www/;
}

fastcgi store access

Syntax: fastcgi_store_access users:permissions . . . ;

Default user:rw

Context: http, server, location

Sets access permissions for newly created files and directories, e.g.:

fastcgi_store_access user:rw group:rw all:r;

If any group or all access permissions are specified then user
permissions may be omitted:

fastcgi_store_access group:rw all:r;

fastcgi temp file write size

Syntax: fastcgi_temp_file_write_size size;

Default 8k|16k

Context: http, server, location

Limits the size of data written to a temporary file at a time, when buffering
of responses from the FastCGI server to temporary files is enabled. By default,
size is limited by two buffers set by the fastcgi buffer size and fastcgi buffers
directives. The maximum size of a temporary file is set by the fastcgi max -
temp file size directive.

fastcgi temp path

Syntax: fastcgi_temp_path path [level1 [level2 [level3]]];

Default fastcgi_temp

Context: http, server, location

Defines a directory for storing temporary files with data received from
FastCGI servers. Up to three-level subdirectory hierarchy can be used
underneath the specified directory. For example, in the following configuration

Nginx, Inc. p.95 of 379

CHAPTER 2. HTTP SERVER MODULES 2.13. MODULE NGX HTTP FASTCGI MODULE

fastcgi_temp_path /spool/nginx/fastcgi_temp 1 2;

a temporary file might look like this:

/spool/nginx/fastcgi_temp/7/45/00000123457

See also the use_temp_path parameter of the fastcgi cache path
directive.

2.13.4 Parameters Passed to a FastCGI Server

HTTP request header fields are passed to a FastCGI server as parameters.
In applications and scripts running as FastCGI servers, these parameters
are usually made available as environment variables. For example, the
User-Agent header field is passed as the HTTP_USER_AGENT parameter.
In addition to HTTP request header fields, it is possible to pass arbitrary
parameters using the fastcgi param directive.

2.13.5 Embedded Variables

The ngx_http_fastcgi_module module supports embedded variables
that can be used to set parameters using the fastcgi param directive:

$fastcgi script name
request URI or, if a URI ends with a slash, request URI with an
index file name configured by the fastcgi index directive appended to
it. This variable can be used to set the SCRIPT_FILENAME and
PATH_TRANSLATED parameters that determine the script name in PHP.
For example, for the “/info/” request with the following directives

fastcgi_index index.php;
fastcgi_param SCRIPT_FILENAME /home/www/scripts/php$fastcgi_script_name;

the SCRIPT_FILENAME parameter will be equal to
“/home/www/scripts/php/info/index.php”.
When using the fastcgi split path info directive, the $fastcgi script name
variable equals the value of the first capture set by the directive.

$fastcgi path info
the value of the second capture set by the fastcgi split path info
directive. This variable can be used to set the PATH_INFO parameter.

Nginx, Inc. p.96 of 379

CHAPTER 2. HTTP SERVER MODULES 2.14. MODULE NGX HTTP FLV MODULE

2.14 Module ngx http flv module

2.14.1 Summary . 97
2.14.2 Example Configuration 97
2.14.3 Directives . 97

flv . 97

2.14.1 Summary

The ngx_http_flv_module module provides pseudo-streaming server-
side support for Flash Video (FLV) files.

It handles requests with the start argument in the request URI’s query
string specially, by sending back the contents of a file starting from the
requested byte offset and with the prepended FLV header.

This module is not built by default, it should be enabled with the
--with-http_flv_module configuration parameter.

2.14.2 Example Configuration

location ~ \.flv$ {
flv;

}

2.14.3 Directives

flv

Syntax: flv;

Default —

Context: location

Turns on module processing in a surrounding location.

Nginx, Inc. p.97 of 379

CHAPTER 2. HTTP SERVER MODULES 2.15. MODULE NGX HTTP GEO MODULE

2.15 Module ngx http geo module

2.15.1 Summary . 98
2.15.2 Example Configuration 98
2.15.3 Directives . 98

geo . 98

2.15.1 Summary

The ngx_http_geo_module module creates variables with values
depending on the client IP address.

2.15.2 Example Configuration

geo $geo {
default 0;

127.0.0.1 2;
192.168.1.0/24 1;
10.1.0.0/16 1;

::1 2;
2001:0db8::/32 1;

}

2.15.3 Directives

geo

Syntax: geo [$address] $variable { . . . }
Default —

Context: http

Describes the dependency of values of the specified variable on the client
IP address. By default, the address is taken from the $remote addr variable,
but it can also be taken from another variable (0.7.27), for example:

geo $arg_remote_addr $geo {
...;

}

Since variables are evaluated only when used, the mere existence of even
a large number of declared “geo” variables does not cause any extra costs for
request processing.

If the value of a variable does not represent a valid IP address then the
“255.255.255.255” address is used.

Addresses are specified either as prefixes in CIDR notation (including
individual addresses) or as ranges (0.7.23).

Nginx, Inc. p.98 of 379

CHAPTER 2. HTTP SERVER MODULES 2.15. MODULE NGX HTTP GEO MODULE

IPv6 prefixes are supported starting from versions 1.3.10 and 1.2.7.

The following special parameters are also supported:

delete
deletes the specified network (0.7.23).

default
a value set to the variable if the client address does not match any of
the specified addresses. When addresses are specified in CIDR notation,
“0.0.0.0/0” and “::/0” can be used instead of default. When
default is not specified, the default value will be an empty string.

include
includes a file with addresses and values. There can be several inclusions.

proxy
defines trusted addresses (0.8.7, 0.7.63). When a request comes from a
trusted address, an address from the X-Forwarded-For request header
field will be used instead. In contrast to the regular addresses, trusted
addresses are checked sequentially.

Trusted IPv6 addresses are supported starting from versions 1.3.0 and
1.2.1.

proxy_recursive
enables recursive address search (1.3.0, 1.2.1). If recursive search is
disabled then instead of the original client address that matches one of
the trusted addresses, the last address sent in X-Forwarded-For will
be used. If recursive search is enabled then instead of the original client
address that matches one of the trusted addresses, the last non-trusted
address sent in X-Forwarded-For will be used.

ranges
indicates that addresses are specified as ranges (0.7.23). This parameter
should be the first. To speed up loading of a geo base, addresses should
be put in ascending order.

Example:

geo $country {
default ZZ;
include conf/geo.conf;
delete 127.0.0.0/16;
proxy 192.168.100.0/24;
proxy 2001:0db8::/32;

127.0.0.0/24 US;
127.0.0.1/32 RU;
10.1.0.0/16 RU;
192.168.1.0/24 UK;

}

The conf/geo.conf file could contain the following lines:

Nginx, Inc. p.99 of 379

CHAPTER 2. HTTP SERVER MODULES 2.15. MODULE NGX HTTP GEO MODULE

10.2.0.0/16 RU;
192.168.2.0/24 RU;

A value of the most specific match is used. For example, for the 127.0.0.1
address the value “RU” will be chosen, not “US”.

Example with ranges:

geo $country {
ranges;
default ZZ;
127.0.0.0-127.0.0.0 US;
127.0.0.1-127.0.0.1 RU;
127.0.0.1-127.0.0.255 US;
10.1.0.0-10.1.255.255 RU;
192.168.1.0-192.168.1.255 UK;

}

Nginx, Inc. p.100 of 379

CHAPTER 2. HTTP SERVER MODULES 2.16. MODULE NGX HTTP GEOIP MODULE

2.16 Module ngx http geoip module

2.16.1 Summary . 101
2.16.2 Example Configuration 101
2.16.3 Directives . 101

geoip country . 101
geoip city . 102
geoip org . 103
geoip proxy . 103
geoip proxy recursive . 103

2.16.1 Summary

The ngx_http_geoip_module module (0.8.6+) creates variables with
values depending on the client IP address, using the precompiled MaxMind
databases.

When using the databases with IPv6 support (1.3.12, 1.2.7), IPv4 addresses
are looked up as IPv4-mapped IPv6 addresses.

This module is not built by default, it should be enabled with the
--with-http_geoip_module configuration parameter.

This module requires the MaxMind GeoIP library.

2.16.2 Example Configuration

http {
geoip_country GeoIP.dat;
geoip_city GeoLiteCity.dat;
geoip_proxy 192.168.100.0/24;
geoip_proxy 2001:0db8::/32;
geoip_proxy_recursive on;
...

2.16.3 Directives

geoip country

Syntax: geoip_country file;

Default —

Context: http

Specifies a database used to determine the country depending on the client
IP address. The following variables are available when using this database:

$geoip country code
two-letter country code, for example, “RU”, “US”.

$geoip country code3
three-letter country code, for example, “RUS”, “USA”.

Nginx, Inc. p.101 of 379

http://www.maxmind.com
http://www.maxmind.com/app/c

CHAPTER 2. HTTP SERVER MODULES 2.16. MODULE NGX HTTP GEOIP MODULE

$geoip country name
country name, for example, “Russian Federation”,
“United States”.

geoip city

Syntax: geoip_city file;

Default —

Context: http

Specifies a database used to determine the country, region, and city
depending on the client IP address. The following variables are available when
using this database:

$geoip area code
telephone area code (US only).

This variable may contain outdated information since the corresponding
database field is deprecated.

$geoip city continent code
two-letter continent code, for example, “EU”, “NA”.

$geoip city country code
two-letter country code, for example, “RU”, “US”.

$geoip city country code3
three-letter country code, for example, “RUS”, “USA”.

$geoip city country name
country name, for example, “Russian Federation”,
“United States”.

$geoip dma code
DMA region code in US (also known as “metro code”), according to the
geotargeting in Google AdWords API.

$geoip latitude
latitude.

$geoip longitude
longitude.

$geoip region
two-symbol country region code (region, territory, state, province, federal
land and the like), for example, “48”, “DC”.

$geoip region name
country region name (region, territory, state, province, federal land and
the like), for example, “Moscow City”, “District of Columbia”.

$geoip city
city name, for example, “Moscow”, “Washington”.

$geoip postal code
postal code.

Nginx, Inc. p.102 of 379

https://developers.google.com/adwords/api/docs/appendix/cities-DMAregions

CHAPTER 2. HTTP SERVER MODULES 2.16. MODULE NGX HTTP GEOIP MODULE

geoip org

Syntax: geoip_org file;

Default —

Context: http
This directive appeared in version 1.0.3.

Specifies a database used to determine the organization depending on the
client IP address. The following variable is available when using this database:

$geoip org
organization name, for example, “The University of Melbourne”.

geoip proxy

Syntax: geoip_proxy address | CIDR;

Default —

Context: http
This directive appeared in versions 1.3.0 and 1.2.1.

Defines trusted addresses. When a request comes from a trusted address,
an address from the X-Forwarded-For request header field will be used
instead.

geoip proxy recursive

Syntax: geoip_proxy_recursive on | off;

Default off

Context: http
This directive appeared in versions 1.3.0 and 1.2.1.

If recursive search is disabled then instead of the original client address
that matches one of the trusted addresses, the last address sent in
X-Forwarded-For will be used. If recursive search is enabled then instead
of the original client address that matches one of the trusted addresses, the
last non-trusted address sent in X-Forwarded-For will be used.

Nginx, Inc. p.103 of 379

CHAPTER 2. HTTP SERVER MODULES 2.17. MODULE NGX HTTP GUNZIP MODULE

2.17 Module ngx http gunzip module

2.17.1 Summary . 104
2.17.2 Example Configuration 104
2.17.3 Directives . 104

gunzip . 104
gunzip buffers . 104

2.17.1 Summary

The ngx_http_gunzip_module module is a filter that decompresses
responses with “Content-Encoding: gzip” for clients that do not
support“gzip”encoding method. The module will be useful when it is desirable
to store data compressed to save space and reduce I/O costs.

This module is not built by default, it should be enabled with the
--with-http_gunzip_module configuration parameter.

2.17.2 Example Configuration

location /storage/ {
gunzip on;
...

}

2.17.3 Directives

gunzip

Syntax: gunzip on | off;

Default off

Context: http, server, location

Enables or disables decompression of gzipped responses for clients that lack
gzip support. If enabled, the following directives are also taken into account
when determining if clients support gzip: gzip http version, gzip proxied, and
gzip disable. See also the gzip vary directive.

gunzip buffers

Syntax: gunzip_buffers number size;

Default 32 4k|16 8k

Context: http, server, location

Sets the number and size of buffers used to decompress a response. By
default, the buffer size is equal to one memory page. This is either 4K or 8K,
depending on a platform.

Nginx, Inc. p.104 of 379

CHAPTER 2. HTTP SERVER MODULES 2.18. MODULE NGX HTTP GZIP MODULE

2.18 Module ngx http gzip module

2.18.1 Summary . 105
2.18.2 Example Configuration 105
2.18.3 Directives . 105

gzip . 105
gzip buffers . 105
gzip comp level . 106
gzip disable . 106
gzip min length . 106
gzip http version . 106
gzip proxied . 107
gzip types . 107
gzip vary . 108

2.18.4 Embedded Variables . 108

2.18.1 Summary

The ngx_http_gzip_module module is a filter that compresses
responses using the “gzip” method. This often helps to reduce the size of
transmitted data by half or even more.

2.18.2 Example Configuration

gzip on;
gzip_min_length 1000;
gzip_proxied expired no-cache no-store private auth;
gzip_types text/plain application/xml;

The $gzip ratio variable can be used to log the achieved compression ratio.

2.18.3 Directives

gzip

Syntax: gzip on | off;

Default off

Context: http, server, location, if in location

Enables or disables gzipping of responses.

gzip buffers

Syntax: gzip_buffers number size;

Default 32 4k|16 8k

Context: http, server, location

Nginx, Inc. p.105 of 379

CHAPTER 2. HTTP SERVER MODULES 2.18. MODULE NGX HTTP GZIP MODULE

Sets the number and size of buffers used to compress a response. By default,
the buffer size is equal to one memory page. This is either 4K or 8K, depending
on a platform.

Until version 0.7.28, four 4K or 8K buffers were used by default.

gzip comp level

Syntax: gzip_comp_level level;

Default 1

Context: http, server, location

Sets a gzip compression level of a response. Acceptable values are in the
range from 1 to 9.

gzip disable

Syntax: gzip_disable regex . . . ;

Default —

Context: http, server, location
This directive appeared in version 0.6.23.

Disables gzipping of responses for requests with User-Agent header fields
matching any of the specified regular expressions.

The special mask “msie6” (0.7.12) corresponds to the regular expression
“MSIE [4-6]\.”, but works faster. Starting from version 0.8.11,
“MSIE 6.0; ...SV1” is excluded from this mask.

gzip min length

Syntax: gzip_min_length length;

Default 20

Context: http, server, location

Sets the minimum length of a response that will be gzipped. The length is
determined only from the Content-Length response header field.

gzip http version

Syntax: gzip_http_version 1.0 | 1.1;

Default 1.1

Context: http, server, location

Sets the minimum HTTP version of a request required to compress a
response.

Nginx, Inc. p.106 of 379

CHAPTER 2. HTTP SERVER MODULES 2.18. MODULE NGX HTTP GZIP MODULE

gzip proxied

Syntax: gzip_proxied off | expired | no-cache | no-store | private |
no_last_modified | no_etag | auth | any . . . ;

Default off

Context: http, server, location

Enables or disables gzipping of responses for proxied requests depending on
the request and response. The fact that the request is proxied is determined
by the presence of the Via request header field. The directive accepts multiple
parameters:

off
disables compression for all proxied requests, ignoring other parameters;

expired
enables compression if a response header includes the Expires field
with a value that disables caching;

no-cache
enables compression if a response header includes the Cache-Control
field with the “no-cache” parameter;

no-store
enables compression if a response header includes the Cache-Control
field with the “no-store” parameter;

private
enables compression if a response header includes the Cache-Control
field with the “private” parameter;

no_last_modified
enables compression if a response header does not include the
Last-Modified field;

no_etag
enables compression if a response header does not include the ETag field;

auth
enables compression if a request header includes the Authorization
field;

any
enables compression for all proxied requests.

gzip types

Syntax: gzip_types mime-type . . . ;

Default text/html

Context: http, server, location

Enables gzipping of responses for the specified MIME types in addition
to “text/html”. The special value “*” matches any MIME type (0.8.29).
Responses with the “text/html” type are always compressed.

Nginx, Inc. p.107 of 379

CHAPTER 2. HTTP SERVER MODULES 2.18. MODULE NGX HTTP GZIP MODULE

gzip vary

Syntax: gzip_vary on | off;

Default off

Context: http, server, location

Enables or disables inserting the Vary: Accept-Encoding response
header field if the directives gzip, gzip static, or gunzip are active.

2.18.4 Embedded Variables

$gzip ratio
achieved compression ratio, computed as the ratio between the original
and compressed response sizes.

Nginx, Inc. p.108 of 379

CHAPTER 2. HTTP SERVER MODULES 2.19. MODULE NGX HTTP GZIP STATIC MODULE

2.19 Module ngx http gzip static module

2.19.1 Summary . 109
2.19.2 Example Configuration 109
2.19.3 Directives . 109

gzip static . 109

2.19.1 Summary

The ngx_http_gzip_static_module module allows sending precom-
pressed files with the “.gz” filename extension instead of regular files.

This module is not built by default, it should be enabled with the
--with-http_gzip_static_module configuration parameter.

2.19.2 Example Configuration

gzip_static on;
gzip_proxied expired no-cache no-store private auth;

2.19.3 Directives

gzip static

Syntax: gzip_static on | off | always;

Default off

Context: http, server, location

Enables (“on”) or disables (“off”) checking the existence of precompressed
files. The following directives are also taken into account: gzip http version,
gzip proxied, gzip disable, and gzip vary.

With the “always” value (1.3.6), gzipped file is used in all cases, without
checking if the client supports it. It is useful if there are no uncompressed files
on the disk anyway or the ngx http gunzip module is used.

The files can be compressed using the gzip command, or any other
compatible one. It is recommended that the modification date and time of
original and compressed files be the same.

Nginx, Inc. p.109 of 379

CHAPTER 2. HTTP SERVER MODULES 2.20. MODULE NGX HTTP HEADERS MODULE

2.20 Module ngx http headers module

2.20.1 Summary . 110
2.20.2 Example Configuration 110
2.20.3 Directives . 110

add header . 110
expires . 110

2.20.1 Summary

The ngx_http_headers_module module allows adding the Expires
and Cache-Control header fields, and arbitrary fields, to a response header.

2.20.2 Example Configuration

expires 24h;
expires modified +24h;
expires @24h;
expires 0;
expires -1;
expires epoch;
expires $expires;
add_header Cache-Control private;

2.20.3 Directives

add header

Syntax: add_header name value [always];

Default —

Context: http, server, location, if in location

Adds the specified field to a response header provided that the response
code equals 200, 201, 204, 206, 301, 302, 303, 304, or 307. A value can contain
variables.

There could be several add_header directives. These directives are
inherited from the previous level if and only if there are no add_header
directives defined on the current level.

If the always parameter is specified (1.7.5), the header field will be added
regardless of the response code.

expires

Syntax: expires [modified] time;

Syntax: expires epoch | max | off;

Default off

Context: http, server, location, if in location

Enables or disables adding or modifying the Expires and
Cache-Control response header fields provided that the response code

Nginx, Inc. p.110 of 379

CHAPTER 2. HTTP SERVER MODULES 2.20. MODULE NGX HTTP HEADERS MODULE

equals 200, 201, 204, 206, 301, 302, 303, 304, or 307. The parameter can be a
positive or negative time.

The time in the Expires field is computed as a sum of the current time
and time specified in the directive. If the modified parameter is used (0.7.0,
0.6.32) then the time is computed as a sum of the file’s modification time and
the time specified in the directive.

In addition, it is possible to specify a time of day using the“@”prefix (0.7.9,
0.6.34):

expires @15h30m;

The epoch parameter corresponds to the absolute time
“Thu, 01 Jan 1970 00:00:01 GMT”. The contents of the
Cache-Control field depends on the sign of the specified time:

• time is negative — Cache-Control: no-cache.

• time is positive or zero — Cache-Control: max-age=t, where t is
a time specified in the directive, in seconds.

The max parameter sets Expires to the value
“Thu, 31 Dec 2037 23:55:55 GMT”, and Cache-Control to 10
years.

The off parameter disables adding or modifying the Expires and
Cache-Control response header fields.

The last parameter value can contain variables (1.7.9):

map $sent_http_content_type $expires {
default off;
application/pdf 42d;
~image/ max;

}

expires $expires;

Nginx, Inc. p.111 of 379

http://nginx.org/en/docs/syntax.html

CHAPTER 2. HTTP SERVER MODULES 2.21. MODULE NGX HTTP HLS MODULE

2.21 Module ngx http hls module

2.21.1 Summary . 112
2.21.2 Example Configuration 112
2.21.3 Directives . 113

hls . 113
hls buffers . 113
hls forward args . 113
hls fragment . 114
hls mp4 buffer size . 114
hls mp4 max buffer size 115

2.21.1 Summary

The ngx_http_hls_module module provides HTTP Live Streaming
(HLS) server-side support for MP4 and MOV media files. Such files typically
have the .mp4, .m4v, .m4a, .mov, or .qt filename extensions. The module
supports H.264 video codec, AAC and MP3 audio codecs.

For each media file, two URIs are supported:

• A playlist URI with the“.m3u8”filename extension. The URI can accept
optional arguments:

– “start” and “end” define playlist boundaries in seconds (1.9.0).

– “offset” shifts an initial playback position to the time offset
in seconds (1.9.0). A positive value sets a time offset from the
beginning of the playlist. A negative value sets a time offset from
the end of the last fragment in the playlist.

– “len” defines the fragment length in seconds.

• A fragment URI with the “.ts” filename extension. The URI can accept
optional arguments:

– “start” and “end” define fragment boundaries in seconds.

This module is available as part of our commercial subscription.

2.21.2 Example Configuration

location / {
hls;
hls_fragment 5s;
hls_buffers 10 10m;
hls_mp4_buffer_size 1m;
hls_mp4_max_buffer_size 5m;
root /var/video/;

}

Nginx, Inc. p.112 of 379

http://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.21. MODULE NGX HTTP HLS MODULE

With this configuration, the following URIs are supported for the “/var¬
/video/test.mp4” file:

http://hls.example.com/test.mp4.m3u8?offset=1.000&start=1.000&end=2.200
http://hls.example.com/test.mp4.m3u8?len=8.000
http://hls.example.com/test.mp4.ts?start=1.000&end=2.200

2.21.3 Directives

hls

Syntax: hls;

Default —

Context: location

Turns on HLS streaming in the surrounding location.

hls buffers

Syntax: hls_buffers number size;

Default 8 2m

Context: http, server, location

Sets the maximum number and size of buffers that are used for reading and
writing data frames.

hls forward args

Syntax: hls_forward_args on | off;

Default off

Context: http, server, location
This directive appeared in version 1.5.12.

Adds arguments from a playlist request to URIs of fragments. This may
be useful for performing client authorization at the moment of requesting a
fragment, or when protecting an HLS stream with the ngx http secure link -
module module.

For example, if a client requests a playlist
http://example.com/hls/test.mp4.m3u8?a=1&b=2, the argu-
ments a=1 and b=2 will be added to URIs of fragments after the arguments
start and end:

#EXTM3U
#EXT-X-VERSION:3
#EXT-X-TARGETDURATION:15
#EXT-X-PLAYLIST-TYPE:VOD

#EXTINF:9.333,
test.mp4.ts?start=0.000&end=9.333&a=1&b=2
#EXTINF:7.167,
test.mp4.ts?start=9.333&end=16.500&a=1&b=2
#EXTINF:5.416,
test.mp4.ts?start=16.500&end=21.916&a=1&b=2

Nginx, Inc. p.113 of 379

CHAPTER 2. HTTP SERVER MODULES 2.21. MODULE NGX HTTP HLS MODULE

#EXTINF:5.500,
test.mp4.ts?start=21.916&end=27.416&a=1&b=2
#EXTINF:15.167,
test.mp4.ts?start=27.416&end=42.583&a=1&b=2
#EXTINF:9.626,
test.mp4.ts?start=42.583&end=52.209&a=1&b=2

#EXT-X-ENDLIST

If an HLS stream is protected with the ngx http secure link module
module, $uri should not be used in the secure link md5 expression because
this will cause errors when requesting the fragments. Base URI should be used
instead of $uri ($hls uri in the example):

http {
...

map $uri $hls_uri {
~^(?<base_uri>.*).m3u8$ $base_uri;
~^(?<base_uri>.*).ts$ $base_uri;
default $uri;

}

server {
...

location /hls {
hls;
hls_forward_args on;

alias /var/videos;

secure_link $arg_md5,$arg_expires;
secure_link_md5 "$secure_link_expires$hls_uri$remote_addr secret";

if ($secure_link = "") {
return 403;

}

if ($secure_link = "0") {
return 410;

}
}

}
}

hls fragment

Syntax: hls_fragment time;

Default 5s

Context: http, server, location

Defines the default fragment length for playlist URIs requested without the
“len” argument.

hls mp4 buffer size

Syntax: hls_mp4_buffer_size size;

Default 512k

Context: http, server, location

Nginx, Inc. p.114 of 379

CHAPTER 2. HTTP SERVER MODULES 2.21. MODULE NGX HTTP HLS MODULE

Sets the initial size of the buffer used for processing MP4 and MOV files.

hls mp4 max buffer size

Syntax: hls_mp4_max_buffer_size size;

Default 10m

Context: http, server, location

During metadata processing, a larger buffer may become necessary. Its size
cannot exceed the specified size, or else nginx will return the server error 500
Internal Server Error, and log the following message:

"/some/movie/file.mp4" mp4 moov atom is too large:
12583268, you may want to increase hls_mp4_max_buffer_size

Nginx, Inc. p.115 of 379

CHAPTER 2. HTTP SERVER MODULES 2.22. MODULE NGX HTTP IMAGE FILTER MODULE

2.22 Module ngx http image filter module

2.22.1 Summary . 116
2.22.2 Example Configuration 116
2.22.3 Directives . 116

image filter . 116
image filter buffer . 117
image filter interlace . 117
image filter jpeg quality 118
image filter sharpen . 118
image filter transparency 118

2.22.1 Summary

The ngx_http_image_filter_module module (0.7.54+) is a filter
that transforms images in JPEG, GIF, and PNG formats.

This module is not built by default, it should be enabled with the
--with-http_image_filter_module configuration parameter.

This module utilizes the libgd library. It is recommended to use the latest
available version of the library.

2.22.2 Example Configuration

location /img/ {
proxy_pass http://backend;
image_filter resize 150 100;
image_filter rotate 90;
error_page 415 = /empty;

}

location = /empty {
empty_gif;

}

2.22.3 Directives

image filter

Syntax: image_filter off;

Syntax: image_filter test;

Syntax: image_filter size;

Syntax: image_filter rotate 90 | 180 | 270;

Syntax: image_filter resize width height;

Syntax: image_filter crop width height;

Default off

Context: location

Sets the type of transformation to perform on images:

Nginx, Inc. p.116 of 379

http://libgd.org

CHAPTER 2. HTTP SERVER MODULES 2.22. MODULE NGX HTTP IMAGE FILTER MODULE

off
turns off module processing in a surrounding location.

test
ensures that responses are images in either JPEG, GIF, or PNG format.
Otherwise, the 415 Unsupported Media Type error is returned.

size
outputs information about images in a JSON format, e.g.:

{ "img" : { "width": 100, "height": 100, "type": "gif" } }

In case of an error, the output is as follows:

{}

rotate 90|180|270
rotates images counter-clockwise by the specified number of degrees.
Parameter value can contain variables. This mode can be used either
alone or along with the resize and crop transformations.

resize width height
proportionally reduces an image to the specified sizes. To reduce by
only one dimension, another dimension can be specified as “-”. In case
of an error, the server will return code 415 Unsupported Media
Type. Parameter values can contain variables. When used along with
the rotate parameter, the rotation happens after reduction.

crop width height
proportionally reduces an image to the larger side size and crops
extraneous edges by another side. To reduce by only one dimension,
another dimension can be specified as “-”. In case of an error, the server
will return code 415 Unsupported Media Type. Parameter values
can contain variables. When used along with the rotate parameter,
the rotation happens before reduction.

image filter buffer

Syntax: image_filter_buffer size;

Default 1M

Context: http, server, location

Sets the maximum size of the buffer used for reading images. When the
size is exceeded the server returns error 415 Unsupported Media Type.

image filter interlace

Syntax: image_filter_interlace on | off;

Default off

Context: http, server, location
This directive appeared in version 1.3.15.

Nginx, Inc. p.117 of 379

CHAPTER 2. HTTP SERVER MODULES 2.22. MODULE NGX HTTP IMAGE FILTER MODULE

If enabled, final images will be interlaced. For JPEG, final images will be
in “progressive JPEG” format.

image filter jpeg quality

Syntax: image_filter_jpeg_quality quality;

Default 75

Context: http, server, location

Sets the desired quality of the transformed JPEG images. Acceptable values
are in the range from 1 to 100. Lesser values usually imply both lower image
quality and less data to transfer. The maximum recommended value is 95.
Parameter value can contain variables.

image filter sharpen

Syntax: image_filter_sharpen percent;

Default 0

Context: http, server, location

Increases sharpness of the final image. The sharpness percentage can
exceed 100. The zero value disables sharpening. Parameter value can contain
variables.

image filter transparency

Syntax: image_filter_transparency on|off;

Default on

Context: http, server, location

Defines whether transparency should be preserved when transforming
GIF images or PNG images with colors specified by a palette. The loss
of transparency results in images of a better quality. The alpha channel
transparency in PNG is always preserved.

Nginx, Inc. p.118 of 379

CHAPTER 2. HTTP SERVER MODULES 2.23. MODULE NGX HTTP INDEX MODULE

2.23 Module ngx http index module

2.23.1 Summary . 119
2.23.2 Example Configuration 119
2.23.3 Directives . 119

index . 119

2.23.1 Summary

The ngx_http_index_module module processes requests ending with
the slash character (‘/’). Such requests can also be processed by the ngx -
http autoindex module and ngx http random index module modules.

2.23.2 Example Configuration

location / {
index index.$geo.html index.html;

}

2.23.3 Directives

index

Syntax: index file . . . ;

Default index.html

Context: http, server, location

Defines files that will be used as an index. The file name can contain
variables. Files are checked in the specified order. The last element of the list
can be a file with an absolute path. Example:

index index.$geo.html index.0.html /index.html;

It should be noted that using an index file causes an internal redirect, and
the request can be processed in a different location. For example, with the
following configuration:

location = / {
index index.html;

}

location / {
...

}

a “/” request will actually be processed in the second location as
“/index.html”.

Nginx, Inc. p.119 of 379

CHAPTER 2. HTTP SERVER MODULES 2.24. MODULE NGX HTTP LIMIT CONN MODULE

2.24 Module ngx http limit conn module

2.24.1 Summary . 120
2.24.2 Example Configuration 120
2.24.3 Directives . 120

limit conn . 120
limit conn log level . 121
limit conn status . 121
limit conn zone . 121
limit zone . 122

2.24.1 Summary

The ngx_http_limit_conn_module module is used to limit the
number of connections per the defined key, in particular, the number of
connections from a single IP address.

Not all connections are counted. A connection is counted only if it has a
request processed by the server and the whole request header has already been
read.

2.24.2 Example Configuration

http {
limit_conn_zone $binary_remote_addr zone=addr:10m;

...

server {

...

location /download/ {
limit_conn addr 1;

}

2.24.3 Directives

limit conn

Syntax: limit_conn zone number;

Default —

Context: http, server, location

Sets the shared memory zone and the maximum allowed number of
connections for a given key value. When this limit is exceeded, the server
will return the 503 Service Temporarily Unavailable error in reply
to a request. For example, the directives

limit_conn_zone $binary_remote_addr zone=addr:10m;

server {

Nginx, Inc. p.120 of 379

CHAPTER 2. HTTP SERVER MODULES 2.24. MODULE NGX HTTP LIMIT CONN MODULE

location /download/ {
limit_conn addr 1;

}

allow only one connection per an IP address at a time.

In HTTP/2 and SPDY, each concurrent request is considered a separate
connection.

There could be several limit_conn directives. For example, the following
configuration will limit the number of connections to the server per a client IP
and, at the same time, the total number of connections to the virtual server:

limit_conn_zone $binary_remote_addr zone=perip:10m;
limit_conn_zone $server_name zone=perserver:10m;

server {
...
limit_conn perip 10;
limit_conn perserver 100;

}

These directives are inherited from the previous level if and only if there
are no limit_conn directives on the current level.

limit conn log level

Syntax: limit_conn_log_level info | notice | warn | error;

Default error

Context: http, server, location
This directive appeared in version 0.8.18.

Sets the desired logging level for cases when the server limits the number
of connections.

limit conn status

Syntax: limit_conn_status code;

Default 503

Context: http, server, location
This directive appeared in version 1.3.15.

Sets the status code to return in response to rejected requests.

limit conn zone

Syntax: limit_conn_zone key zone=name:size;

Default —

Context: http

Sets parameters for a shared memory zone that will keep states for various
keys. In particular, the state includes the current number of connections. The
key can contain text, variables, and their combination. Requests with an empty
key value are not accounted.

Nginx, Inc. p.121 of 379

CHAPTER 2. HTTP SERVER MODULES 2.24. MODULE NGX HTTP LIMIT CONN MODULE

Prior to version 1.7.6, a key could contain exactly one variable.

Usage example:

limit_conn_zone $binary_remote_addr zone=addr:10m;

Here, a client IP address serves as a key. Note that instead of $remote addr,
the $binary remote addr variable is used here. The $remote addr variable’s size
can vary from 7 to 15 bytes. The stored state occupies either 32 or 64 bytes
of memory on 32-bit platforms and always 64 bytes on 64-bit platforms. The
$binary remote addr variable’s size is always 4 bytes for IPv4 addresses or 16
bytes for IPv6 addresses. The stored state always occupies 32 or 64 bytes on
32-bit platforms and 64 bytes on 64-bit platforms. One megabyte zone can
keep about 32 thousand 32-byte states or about 16 thousand 64-byte states.
If the zone storage is exhausted, the server will return the 503 Service
Temporarily Unavailable error to all further requests.

limit zone

Syntax: limit_zone name $variable size;

Default —

Context: http

This directive was made obsolete in version 1.1.8 and was removed in
version 1.7.6. An equivalent limit conn zone directive with a changed syntax
should be used instead:

limit_conn_zone $variable zone=name:size;

Nginx, Inc. p.122 of 379

CHAPTER 2. HTTP SERVER MODULES 2.25. MODULE NGX HTTP LIMIT REQ MODULE

2.25 Module ngx http limit req module

2.25.1 Summary . 123
2.25.2 Example Configuration 123
2.25.3 Directives . 123

limit req . 123
limit req log level . 124
limit req status . 124
limit req zone . 125

2.25.1 Summary

The ngx_http_limit_req_module module (0.7.21) is used to limit
the request processing rate per a defined key, in particular, the processing rate
of requests coming from a single IP address. The limitation is done using the
“leaky bucket” method.

2.25.2 Example Configuration

http {
limit_req_zone $binary_remote_addr zone=one:10m rate=1r/s;

...

server {

...

location /search/ {
limit_req zone=one burst=5;

}

2.25.3 Directives

limit req

Syntax: limit_req zone=name [burst=number] [nodelay];

Default —

Context: http, server, location

Sets the shared memory zone and the maximum burst size of requests. If
the requests rate exceeds the rate configured for a zone, their processing is
delayed such that requests are processed at a defined rate. Excessive requests
are delayed until their number exceeds the maximum burst size in which
case the request is terminated with an error 503 Service Temporarily
Unavailable. By default, the maximum burst size is equal to zero. For
example, the directives

limit_req_zone $binary_remote_addr zone=one:10m rate=1r/s;

server {

Nginx, Inc. p.123 of 379

CHAPTER 2. HTTP SERVER MODULES 2.25. MODULE NGX HTTP LIMIT REQ MODULE

location /search/ {
limit_req zone=one burst=5;

}

allow not more than 1 request per second at an average, with bursts not
exceeding 5 requests.

If delaying of excessive requests while requests are being limited is not
desired, the parameter nodelay should be used:

limit_req zone=one burst=5 nodelay;

There could be several limit_req directives. For example, the following
configuration will limit the processing rate of requests coming from a single
IP address and, at the same time, the request processing rate by the virtual
server:

limit_req_zone $binary_remote_addr zone=perip:10m rate=1r/s;
limit_req_zone $server_name zone=perserver:10m rate=10r/s;

server {
...
limit_req zone=perip burst=5 nodelay;
limit_req zone=perserver burst=10;

}

These directives are inherited from the previous level if and only if there
are no limit_req directives on the current level.

limit req log level

Syntax: limit_req_log_level info | notice | warn | error;

Default error

Context: http, server, location
This directive appeared in version 0.8.18.

Sets the desired logging level for cases when the server refuses to process
requests due to rate exceeding, or delays request processing. Logging
level for delays is one point less than for refusals; for example, if
“limit_req_log_level notice” is specified, delays are logged with the
info level.

limit req status

Syntax: limit_req_status code;

Default 503

Context: http, server, location
This directive appeared in version 1.3.15.

Sets the status code to return in response to rejected requests.

Nginx, Inc. p.124 of 379

CHAPTER 2. HTTP SERVER MODULES 2.25. MODULE NGX HTTP LIMIT REQ MODULE

limit req zone

Syntax: limit_req_zone key zone=name:size rate=rate;

Default —

Context: http

Sets parameters for a shared memory zone that will keep states for various
keys. In particular, the state stores the current number of excessive requests.
The key can contain text, variables, and their combination. Requests with an
empty key value are not accounted.

Prior to version 1.7.6, a key could contain exactly one variable.

Usage example:

limit_req_zone $binary_remote_addr zone=one:10m rate=1r/s;

Here, the states are kept in a 10 megabyte zone “one”, and an average
request processing rate for this zone cannot exceed 1 request per second.

A client IP address serves as a key. Note that instead of $remote addr, the
$binary remote addr variable is used here. The $binary remote addr variable’s
size is always 4 bytes for IPv4 addresses or 16 bytes for IPv6 addresses. The
stored state always occupies 64 bytes on 32-bit platforms and 128 bytes on 64-
bit platforms. One megabyte zone can keep about 16 thousand 64-byte states
or about 8 thousand 128-byte states. If the zone storage is exhausted, the
server will return the 503 Service Temporarily Unavailable error
to all further requests.

The rate is specified in requests per second (r/s). If a rate of less than one
request per second is desired, it is specified in request per minute (r/m). For
example, half-request per second is 30r/m.

Nginx, Inc. p.125 of 379

CHAPTER 2. HTTP SERVER MODULES 2.26. MODULE NGX HTTP LOG MODULE

2.26 Module ngx http log module

2.26.1 Summary . 126
2.26.2 Example Configuration 126
2.26.3 Directives . 126

access log . 126
log format . 128
open log file cache . 129

2.26.1 Summary

The ngx_http_log_module module writes request logs in the specified
format.

Requests are logged in the context of a location where processing ends.
It may be different from the original location, if an internal redirect happens
during request processing.

2.26.2 Example Configuration

log_format compression ’$remote_addr - $remote_user [$time_local] ’
’"$request" $status $bytes_sent ’
’"$http_referer" "$http_user_agent" "$gzip_ratio"’;

access_log /spool/logs/nginx-access.log compression buffer=32k;

2.26.3 Directives

access log

Syntax: access_log path [format [buffer=size] [gzip[=level]]

[flush=time] [if=condition]];

Syntax: access_log off;

Default logs/access.log combined

Context: http, server, location, if in location, limit except

Sets the path, format, and configuration for a buffered log write. Several
logs can be specified on the same level. Logging to syslog can be configured
by specifying the “syslog:” prefix in the first parameter. The special value
off cancels all access_log directives on the current level. If the format is
not specified then the predefined “combined” format is used.

If either the buffer or gzip (1.3.10, 1.2.7) parameter is used, writes to
log will be buffered.

The buffer size must not exceed the size of an atomic write to a disk file.
For FreeBSD this size is unlimited.

When buffering is enabled, the data will be written to the file:

Nginx, Inc. p.126 of 379

CHAPTER 2. HTTP SERVER MODULES 2.26. MODULE NGX HTTP LOG MODULE

• if the next log line does not fit into the buffer;

• if the buffered data is older than specified by the flush parameter
(1.3.10, 1.2.7);

• when a worker process is re-opening log files or is shutting down.

If the gzip parameter is used, then the buffered data will be compressed
before writing to the file. The compression level can be set between 1 (fastest,
less compression) and 9 (slowest, best compression). By default, the buffer
size is equal to 64K bytes, and the compression level is set to 1. Since the data
is compressed in atomic blocks, the log file can be decompressed or read by
“zcat” at any time.

Example:

access_log /path/to/log.gz combined gzip flush=5m;

For gzip compression to work, nginx must be built with the zlib library.

The file path can contain variables (0.7.6+), but such logs have some
constraints:

• the user whose credentials are used by worker processes should have
permissions to create files in a directory with such logs;

• buffered writes do not work;

• the file is opened and closed for each log write. However, since the
descriptors of frequently used files can be stored in a cache, writing to
the old file can continue during the time specified by the open log file -
cache directive’s valid parameter

• during each log write the existence of the request’s root directory is
checked, and if it does not exist the log is not created. It is thus a good
idea to specify both root and access_log on the same level:

server {
root /spool/vhost/data/$host;
access_log /spool/vhost/logs/$host;
...

The if parameter (1.7.0) enables conditional logging. A request will not
be logged if the condition evaluates to “0” or an empty string. In the following
example, the requests with response codes 2xx and 3xx will not be logged:

map $status $loggable {
~^[23] 0;
default 1;

}

access_log /path/to/access.log combined if=$loggable;

Nginx, Inc. p.127 of 379

http://nginx.org/en/docs/control.html

CHAPTER 2. HTTP SERVER MODULES 2.26. MODULE NGX HTTP LOG MODULE

log format

Syntax: log_format name string . . . ;

Default combined "..."

Context: http

Specifies log format.
The log format can contain common variables, and variables that exist only

at the time of a log write:

$bytes sent
the number of bytes sent to a client

$connection
connection serial number

$connection requests
the current number of requests made through a connection (1.1.18)

$msec
time in seconds with a milliseconds resolution at the time of the log write

$pipe
“p” if request was pipelined, “.” otherwise

$request length
request length (including request line, header, and request body)

$request time
request processing time in seconds with a milliseconds resolution; time
elapsed between the first bytes were read from the client and the log
write after the last bytes were sent to the client

$status
response status

$time iso8601
local time in the ISO 8601 standard format

$time local
local time in the Common Log Format

In the modern nginx versions variables $status (1.3.2, 1.2.2), $bytes -
sent (1.3.8, 1.2.5), $connection (1.3.8, 1.2.5), $connection requests (1.3.8,
1.2.5), $msec (1.3.9, 1.2.6), $request time (1.3.9, 1.2.6), $pipe (1.3.12, 1.2.7),
$request length (1.3.12, 1.2.7), $time iso8601 (1.3.12, 1.2.7), and $time local
(1.3.12, 1.2.7) are also available as common variables.

Header lines sent to a client have the prefix “sent_http_”, for example,
$sent http content range.

The configuration always includes the predefined “combined” format:

log_format combined ’$remote_addr - $remote_user [$time_local] ’
’"$request" $status $body_bytes_sent ’
’"$http_referer" "$http_user_agent"’;

Nginx, Inc. p.128 of 379

CHAPTER 2. HTTP SERVER MODULES 2.26. MODULE NGX HTTP LOG MODULE

open log file cache

Syntax: open_log_file_cache max=N [inactive=time] [min_uses=N]

[valid=time];

Syntax: open_log_file_cache off;

Default off

Context: http, server, location

Defines a cache that stores the file descriptors of frequently used logs whose
names contain variables. The directive has the following parameters:

max
sets the maximum number of descriptors in a cache; if the cache becomes
full the least recently used (LRU) descriptors are closed

inactive
sets the time after which the cached descriptor is closed if there were no
access during this time; by default, 10 seconds

min_uses
sets the minimum number of file uses during the time defined by the
inactive parameter to let the descriptor stay open in a cache; by
default, 1

valid
sets the time after which it should be checked that the file still exists
with the same name; by default, 60 seconds

off
disables caching

Usage example:

open_log_file_cache max=1000 inactive=20s valid=1m min_uses=2;

Nginx, Inc. p.129 of 379

CHAPTER 2. HTTP SERVER MODULES 2.27. MODULE NGX HTTP MAP MODULE

2.27 Module ngx http map module

2.27.1 Summary . 130
2.27.2 Example Configuration 130
2.27.3 Directives . 130

map . 130
map hash bucket size . 132
map hash max size . 132

2.27.1 Summary

The ngx_http_map_module module creates variables whose values
depend on values of other variables.

2.27.2 Example Configuration

map $http_host $name {
hostnames;

default 0;

example.com 1;

*.example.com 1;
example.org 2;

*.example.org 2;
.example.net 3;
wap.* 4;

}

map $http_user_agent $mobile {
default 0;
"~Opera Mini" 1;

}

2.27.3 Directives

map

Syntax: map string $variable { . . . }
Default —

Context: http

Creates a new variable whose value depends on values of one or more of
the source variables specified in the first parameter.

Before version 0.9.0 only a single variable could be specified in the first
parameter.

Since variables are evaluated only when they are used, the mere
declaration even of a large number of “map” variables does not add any extra
costs to request processing.

Nginx, Inc. p.130 of 379

CHAPTER 2. HTTP SERVER MODULES 2.27. MODULE NGX HTTP MAP MODULE

Parameters inside the map block specify a mapping between source and
resulting values.

Source values are specified as strings or regular expressions (0.9.6).
Strings are matched ignoring the case.
A regular expression should either start from the “~” symbol for a case-

sensitive matching, or from the “~*” symbols (1.0.4) for case-insensitive
matching. A regular expression can contain named and positional captures
that can later be used in other directives along with the resulting variable.

If a source value matches one of the names of special parameters described
below, it should be prefixed with the “\” symbol.

The resulting value can contain text, variable (0.9.0), and their combination
(1.11.0).

The directive also supports three special parameters:

default value
sets the resulting value if the source value matches none of the specified
variants. When default is not specified, the default resulting value
will be an empty string.

hostnames
indicates that source values can be hostnames with a prefix or suffix
mask:

*.example.com 1;
example.* 1;

The following two records

example.com 1;

*.example.com 1;

can be combined:

.example.com 1;

This parameter should be specified before the list of values.

include file
includes a file with values. There can be several inclusions.

If the source value matches more than one of the specified variants, e.g.
both a mask and a regular expression match, the first matching variant will be
chosen, in the following order of priority:

1. string value without a mask

2. longest string value with a prefix mask, e.g. “*.example.com”

3. longest string value with a suffix mask, e.g. “mail.*”

4. first matching regular expression (in order of appearance in a
configuration file)

5. default value

Nginx, Inc. p.131 of 379

CHAPTER 2. HTTP SERVER MODULES 2.27. MODULE NGX HTTP MAP MODULE

map hash bucket size

Syntax: map_hash_bucket_size size;

Default 32|64|128

Context: http

Sets the bucket size for the map variables hash tables. Default value
depends on the processor’s cache line size. The details of setting up hash
tables are provided in a separate document.

map hash max size

Syntax: map_hash_max_size size;

Default 2048

Context: http

Sets the maximum size of the map variables hash tables. The details of
setting up hash tables are provided in a separate document.

Nginx, Inc. p.132 of 379

CHAPTER 2. HTTP SERVER MODULES 2.28. MODULE NGX HTTP MEMCACHED MODULE

2.28 Module ngx http memcached module

2.28.1 Summary . 133
2.28.2 Example Configuration 133
2.28.3 Directives . 133

memcached bind . 133
memcached buffer size 134
memcached connect timeout 134
memcached force ranges 134
memcached gzip flag . 134
memcached next upstream 135
memcached next upstream timeout 135
memcached next upstream tries 136
memcached pass . 136
memcached read timeout 136
memcached send timeout 136

2.28.4 Embedded Variables . 137

2.28.1 Summary

The ngx_http_memcached_module module is used to obtain responses
from a memcached server. The key is set in the $memcached key variable. A
response should be put in memcached in advance by means external to nginx.

2.28.2 Example Configuration

server {
location / {

set $memcached_key "$uri?$args";
memcached_pass host:11211;
error_page 404 502 504 = @fallback;

}

location @fallback {
proxy_pass http://backend;

}
}

2.28.3 Directives

memcached bind

Syntax: memcached_bind address [transparent] | off;

Default —

Context: http, server, location
This directive appeared in version 0.8.22.

Makes outgoing connections to a memcached server originate from the
specified local IP address with an optional port (1.11.2). Parameter value can
contain variables (1.3.12). The special value off (1.3.12) cancels the effect

Nginx, Inc. p.133 of 379

CHAPTER 2. HTTP SERVER MODULES 2.28. MODULE NGX HTTP MEMCACHED MODULE

of the memcached_bind directive inherited from the previous configuration
level, which allows the system to auto-assign the local IP address and port.

The transparent parameter (1.11.0) allows outgoing connections to a
memcached server originate from a non-local IP address, for example, from a
real IP address of a client:

memcached_bind $remote_addr transparent;

In order for this parameter to work, it is necessary to run nginx worker
processes with the superuser privileges and configure kernel routing table to
intercept network traffic from the memcached server.

memcached buffer size

Syntax: memcached_buffer_size size;

Default 4k|8k

Context: http, server, location

Sets the size of the buffer used for reading the response received from the
memcached server. The response is passed to the client synchronously, as soon
as it is received.

memcached connect timeout

Syntax: memcached_connect_timeout time;

Default 60s

Context: http, server, location

Defines a timeout for establishing a connection with a memcached server.
It should be noted that this timeout cannot usually exceed 75 seconds.

memcached force ranges

Syntax: memcached_force_ranges on | off;

Default off

Context: http, server, location
This directive appeared in version 1.7.7.

Enables byte-range support for both cached and uncached responses from
the memcached server regardless of the Accept-Ranges field in these
responses.

memcached gzip flag

Syntax: memcached_gzip_flag flag;

Default —

Context: http, server, location
This directive appeared in version 1.3.6.

Nginx, Inc. p.134 of 379

CHAPTER 2. HTTP SERVER MODULES 2.28. MODULE NGX HTTP MEMCACHED MODULE

Enables the test for the flag presence in the memcached server response
and sets the “Content-Encoding” response header field to “gzip” if the
flag is set.

memcached next upstream

Syntax: memcached_next_upstream error | timeout |
invalid_response | not_found | off . . . ;

Default error timeout

Context: http, server, location

Specifies in which cases a request should be passed to the next server:

error
an error occurred while establishing a connection with the server, passing
a request to it, or reading the response header;

timeout
a timeout has occurred while establishing a connection with the server,
passing a request to it, or reading the response header;

invalid_response
a server returned an empty or invalid response;

not_found
a response was not found on the server;

off
disables passing a request to the next server.

One should bear in mind that passing a request to the next server is only
possible if nothing has been sent to a client yet. That is, if an error or timeout
occurs in the middle of the transferring of a response, fixing this is impossible.

The directive also defines what is considered an unsuccessful attempt
of communication with a server. The cases of error, timeout and
invalid_header are always considered unsuccessful attempts, even if they
are not specified in the directive. The case of not_found is never considered
an unsuccessful attempt.

Passing a request to the next server can be limited by the number of tries
and by time.

memcached next upstream timeout

Syntax: memcached_next_upstream_timeout time;

Default 0

Context: http, server, location
This directive appeared in version 1.7.5.

Limits the time during which a request can be passed to the next server.
The 0 value turns off this limitation.

Nginx, Inc. p.135 of 379

CHAPTER 2. HTTP SERVER MODULES 2.28. MODULE NGX HTTP MEMCACHED MODULE

memcached next upstream tries

Syntax: memcached_next_upstream_tries number;

Default 0

Context: http, server, location
This directive appeared in version 1.7.5.

Limits the number of possible tries for passing a request to the next server.
The 0 value turns off this limitation.

memcached pass

Syntax: memcached_pass address;

Default —

Context: location, if in location

Sets the memcached server address. The address can be specified as a
domain name or IP address, and a port:

memcached_pass localhost:11211;

or as a UNIX-domain socket path:

memcached_pass unix:/tmp/memcached.socket;

If a domain name resolves to several addresses, all of them will be used
in a round-robin fashion. In addition, an address can be specified as a server
group.

memcached read timeout

Syntax: memcached_read_timeout time;

Default 60s

Context: http, server, location

Defines a timeout for reading a response from the memcached server.
The timeout is set only between two successive read operations, not for the
transmission of the whole response. If the memcached server does not transmit
anything within this time, the connection is closed.

memcached send timeout

Syntax: memcached_send_timeout time;

Default 60s

Context: http, server, location

Sets a timeout for transmitting a request to the memcached server. The
timeout is set only between two successive write operations, not for the
transmission of the whole request. If the memcached server does not receive
anything within this time, the connection is closed.

Nginx, Inc. p.136 of 379

CHAPTER 2. HTTP SERVER MODULES 2.28. MODULE NGX HTTP MEMCACHED MODULE

2.28.4 Embedded Variables

$memcached key
Defines a key for obtaining response from a memcached server.

Nginx, Inc. p.137 of 379

CHAPTER 2. HTTP SERVER MODULES 2.29. MODULE NGX HTTP MP4 MODULE

2.29 Module ngx http mp4 module

2.29.1 Summary . 138
2.29.2 Example Configuration 139
2.29.3 Directives . 139

mp4 . 139
mp4 buffer size . 139
mp4 max buffer size . 139
mp4 limit rate . 140
mp4 limit rate after . 140

2.29.1 Summary

The ngx_http_mp4_module module provides pseudo-streaming server-
side support for MP4 files. Such files typically have the .mp4, .m4v, or .m4a
filename extensions.

Pseudo-streaming works in alliance with a compatible Flash player. The
player sends an HTTP request to the server with the start time specified in the
query string argument (named simply start and specified in seconds), and
the server responds with the stream such that its start position corresponds to
the requested time, for example:

http://example.com/elephants_dream.mp4?start=238.88

This allows performing a random seeking at any time, or starting playback
in the middle of the timeline.

To support seeking, H.264-based formats store metadata in a so-called
“moov atom”. It is a part of the file that holds the index information for
the whole file.

To start playback, the player first needs to read metadata. This is done
by sending a special request with the start=0 argument. A lot of encoding
software insert the metadata at the end of the file. This is suboptimal for
pseudo-streaming, because the player has to download the entire file before
starting playback. If the metadata are located at the beginning of the file,
it is enough for nginx to simply start sending back the file contents. If the
metadata are located at the end of the file, nginx must read the entire file and
prepare a new stream so that the metadata come before the media data. This
involves some CPU, memory, and disk I/O overhead, so it is a good idea to
prepare an original file for pseudo-streaming in advance, rather than having

nginx do this on every such request.
The module also supports the end argument of an HTTP request (1.5.13)

which sets the end point of playback. The end argument can be specified with
the start argument or separately:

http://example.com/elephants_dream.mp4?start=238.88&end=555.55

Nginx, Inc. p.138 of 379

http://flowplayer.org/plugins/streaming/pseudostreaming.html#prepare

CHAPTER 2. HTTP SERVER MODULES 2.29. MODULE NGX HTTP MP4 MODULE

For a matching request with a non-zero start or end argument, nginx
will read the metadata from the file, prepare the stream with the requested
time range, and send it to the client. This has the same overhead as described
above.

If a matching request does not include the start and end arguments,
there is no overhead, and the file is sent simply as a static resource. Some
players also support byte-range requests, and thus do not require this module.

This module is not built by default, it should be enabled with the
--with-http_mp4_module configuration parameter.

If a third-party mp4 module was previously used, it should be disabled.

A similar pseudo-streaming support for FLV files is provided by the ngx -
http flv module module.

2.29.2 Example Configuration

location /video/ {
mp4;
mp4_buffer_size 1m;
mp4_max_buffer_size 5m;
mp4_limit_rate on;
mp4_limit_rate_after 30s;

}

2.29.3 Directives

mp4

Syntax: mp4;

Default —

Context: location

Turns on module processing in a surrounding location.

mp4 buffer size

Syntax: mp4_buffer_size size;

Default 512K

Context: http, server, location

Sets the initial size of the buffer used for processing MP4 files.

mp4 max buffer size

Syntax: mp4_max_buffer_size size;

Default 10M

Context: http, server, location

Nginx, Inc. p.139 of 379

CHAPTER 2. HTTP SERVER MODULES 2.29. MODULE NGX HTTP MP4 MODULE

During metadata processing, a larger buffer may become necessary. Its size
cannot exceed the specified size, or else nginx will return the 500 Internal
Server Error server error, and log the following message:

"/some/movie/file.mp4" mp4 moov atom is too large:
12583268, you may want to increase mp4_max_buffer_size

mp4 limit rate

Syntax: mp4_limit_rate on | off | factor;

Default off

Context: http, server, location

Limits the rate of response transmission to a client. The rate is limited
based on the average bitrate of the MP4 file served. To calculate the rate, the
bitrate is multiplied by the specified factor. The special value“on”corresponds
to the factor of 1.1. The special value “off” disables rate limiting. The limit
is set per a request, and so if a client simultaneously opens two connections,
the overall rate will be twice as much as the specified limit.

This directive is available as part of our commercial subscription.

mp4 limit rate after

Syntax: mp4_limit_rate_after time;

Default 60s

Context: http, server, location

Sets the initial amount of media data (measured in playback time) after
which the further transmission of the response to a client will be rate limited.

This directive is available as part of our commercial subscription.

Nginx, Inc. p.140 of 379

http://nginx.com/products/
http://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.30. MODULE NGX HTTP PERL MODULE

2.30 Module ngx http perl module

2.30.1 Summary . 141
2.30.2 Known Issues . 141
2.30.3 Example Configuration 142
2.30.4 Directives . 142

perl . 142
perl modules . 143
perl require . 143
perl set . 143

2.30.5 Calling Perl from SSI . 143
2.30.6 The $r Request Object Methods 143

2.30.1 Summary

The ngx_http_perl_module module is used to implement location and
variable handlers in Perl and insert Perl calls into SSI.

This module is not built by default, it should be enabled with the
--with-http_perl_module configuration parameter.

This module requires Perl version 5.6.1 or higher. The C compiler should
be compatible with the one used to build Perl.

2.30.2 Known Issues

The module is experimental, caveat emptor applies.
In order for Perl to recompile the modified modules during recon-

figuration, it should be built with the -Dusemultiplicity=yes or
-Dusethreads=yes parameters. Also, to make Perl leak less memory at
run time, it should be built with the -Dusemymalloc=no parameter. To
check the values of these parameters in an already built Perl (preferred values
are specified in the example), run:

$ perl -V:usemultiplicity -V:usemymalloc
usemultiplicity=’define’;
usemymalloc=’n’;

Note that after rebuilding Perl with the new -Dusemultiplicity=yes
or -Dusethreads=yes parameters, all binary Perl modules will have to be
rebuilt as well — they will just stop working with the new Perl.

There is a possibility that the main process and then worker processes
will grow in size after every reconfiguration. If the main process grows to an
unacceptable size, the live upgrade procedure can be applied without changing
the executable file.

While the Perl module is performing a long-running operation, such as
resolving a domain name, connecting to another server, or querying a database,
other requests assigned to the current worker process will not be processed. It

Nginx, Inc. p.141 of 379

https://www.perl.org/get.html
http://nginx.org/en/docs/control.html#upgrade

CHAPTER 2. HTTP SERVER MODULES 2.30. MODULE NGX HTTP PERL MODULE

is thus recommended to perform only such operations that have predictable
and short execution time, such as accessing the local file system.

2.30.3 Example Configuration

http {

perl_modules perl/lib;
perl_require hello.pm;

perl_set $msie6 ’

sub {
my $r = shift;
my $ua = $r->header_in("User-Agent");

return "" if $ua =~ /Opera/;
return "1" if $ua =~ / MSIE [6-9]\.\d+/;
return "";

}

’;

server {
location / {

perl hello::handler;
}

}

The perl/lib/hello.pm module:

package hello;

use nginx;

sub handler {
my $r = shift;

$r->send_http_header("text/html");
return OK if $r->header_only;

$r->print("hello!\n
");

if (-f $r->filename or -d _) {
$r->print($r->uri, " exists!\n");

}

return OK;
}

1;
__END__

2.30.4 Directives

perl

Syntax: perl module::function|’sub { . . . }’;

Default —

Context: location, limit except

Nginx, Inc. p.142 of 379

CHAPTER 2. HTTP SERVER MODULES 2.30. MODULE NGX HTTP PERL MODULE

Sets a Perl handler for the given location.

perl modules

Syntax: perl_modules path;

Default —

Context: http

Sets an additional path for Perl modules.

perl require

Syntax: perl_require module;

Default —

Context: http

Defines the name of a module that will be loaded during each
reconfiguration. Several perl_require directives can be present.

perl set

Syntax: perl_set $variable module::function|’sub { . . . }’;

Default —

Context: http

Installs a Perl handler for the specified variable.

2.30.5 Calling Perl from SSI

An SSI command calling Perl has the following format:

<!--# perl sub="module::function" arg="parameter1" arg="parameter2" ...
-->

2.30.6 The $r Request Object Methods

$r->args
returns request arguments.

$r->filename
returns a filename corresponding to the request URI.

$r->has_request_body(handler)
returns 0 if there is no body in a request. If there is a body, the specified
handler is set for the request and 1 is returned. After reading the request
body, nginx will call the specified handler. Note that the handler function
should be passed by reference. Example:

package hello;

use nginx;

Nginx, Inc. p.143 of 379

CHAPTER 2. HTTP SERVER MODULES 2.30. MODULE NGX HTTP PERL MODULE

sub handler {
my $r = shift;

if ($r->request_method ne "POST") {
return DECLINED;

}

if ($r->has_request_body(\&post)) {
return OK;

}

return HTTP_BAD_REQUEST;
}

sub post {
my $r = shift;

$r->send_http_header;

$r->print("request_body: \"", $r->request_body, "\"
");
$r->print("request_body_file: \"", $r->request_body_file, "\"
\n

");

return OK;
}

1;

__END__

$r->allow_ranges
enables the use of byte ranges when sending responses.

$r->discard_request_body
instructs nginx to discard the request body.

$r->header_in(field)
returns the value of the specified client request header field.

$r->header_only
determines whether the whole response or only its header should be sent
to the client.

$r->header_out(field, value)
sets a value for the specified response header field.

$r->internal_redirect(uri)
does an internal redirect to the specified uri. An actual redirect happens
after the Perl handler execution is completed.

Redirections to named locations are currently not supported.

$r->log_error(errno, message)
writes the specified message into the error log. If errno is non-zero, an
error code and its description will be appended to the message.

$r->print(text, ...)
passes data to a client.

$r->request_body
returns the client request body if it has not been written to a temporary
file. To ensure that the client request body is in memory, its size should

Nginx, Inc. p.144 of 379

CHAPTER 2. HTTP SERVER MODULES 2.30. MODULE NGX HTTP PERL MODULE

be limited by client max body size, and a sufficient buffer size should be
set using client body buffer size.

$r->request_body_file
returns the name of the file with the client request body. After the
processing, the file should be removed. To always write a request body
to a file, client body in file only should be enabled.

$r->request_method
returns the client request HTTP method.

$r->remote_addr
returns the client IP address.

$r->flush
immediately sends data to the client.

$r->sendfile(name[, offset[, length]])
sends the specified file content to the client. Optional parameters specify
the initial offset and length of the data to be transmitted. The actual
data transmission happens after the Perl handler has completed.

$r->send_http_header([type])
sends the response header to the client. The optional type parameter sets
the value of the Content-Type response header field. If the value is
an empty string, the Content-Type header field will not be sent.

$r->status(code)
sets a response code.

$r->sleep(milliseconds, handler)
sets the specified handler and stops request processing for the specified
time. In the meantime, nginx continues to process other requests. After
the specified time has elapsed, nginx will call the installed handler. Note
that the handler function should be passed by reference. In order to pass
data between handlers, $r->variable() should be used. Example:

package hello;

use nginx;

sub handler {
my $r = shift;

$r->discard_request_body;
$r->variable("var", "OK");
$r->sleep(1000, \&next);

return OK;
}

sub next {
my $r = shift;

$r->send_http_header;
$r->print($r->variable("var"));

return OK;
}

1;

__END__

Nginx, Inc. p.145 of 379

CHAPTER 2. HTTP SERVER MODULES 2.30. MODULE NGX HTTP PERL MODULE

$r->unescape(text)
decodes a text encoded in the “%XX” form.

$r->uri
returns a request URI.

$r->variable(name[, value])
returns or sets the value of the specified variable. Variables are local to
each request.

Nginx, Inc. p.146 of 379

CHAPTER 2. HTTP SERVER MODULES 2.31. MODULE NGX HTTP PROXY MODULE

2.31 Module ngx http proxy module

2.31.1 Summary . 148
2.31.2 Example Configuration 148
2.31.3 Directives . 148

proxy bind . 148
proxy buffer size . 149
proxy buffering . 149
proxy buffers . 150
proxy busy buffers size 150
proxy cache . 150
proxy cache bypass . 150
proxy cache convert head 151
proxy cache key . 151
proxy cache lock . 151
proxy cache lock age . 151
proxy cache lock timeout 152
proxy cache methods . 152
proxy cache min uses . 152
proxy cache path . 152
proxy cache purge . 154
proxy cache revalidate 154
proxy cache use stale . 155
proxy cache valid . 155
proxy connect timeout 156
proxy cookie domain . 156
proxy cookie path . 157
proxy force ranges . 158
proxy headers hash bucket size 158
proxy headers hash max size 158
proxy hide header . 158
proxy http version . 159
proxy ignore client abort 159
proxy ignore headers . 159
proxy intercept errors 159
proxy limit rate . 160
proxy max temp file size 160
proxy method . 160
proxy next upstream . 161
proxy next upstream timeout 162
proxy next upstream tries 162
proxy no cache . 162
proxy pass . 162
proxy pass header . 164
proxy pass request body 164
proxy pass request headers 164

Nginx, Inc. p.147 of 379

CHAPTER 2. HTTP SERVER MODULES 2.31. MODULE NGX HTTP PROXY MODULE

proxy read timeout . 165
proxy redirect . 165
proxy request buffering 166
proxy send lowat . 167
proxy send timeout . 167
proxy set body . 167
proxy set header . 167
proxy ssl certificate . 168
proxy ssl certificate key 168
proxy ssl ciphers . 169
proxy ssl crl . 169
proxy ssl name . 169
proxy ssl password file 169
proxy ssl server name 170
proxy ssl session reuse 170
proxy ssl protocols . 170
proxy ssl trusted certificate 170
proxy ssl verify . 170
proxy ssl verify depth 171
proxy store . 171
proxy store access . 172
proxy temp file write size 172
proxy temp path . 172

2.31.4 Embedded Variables . 173

2.31.1 Summary

The ngx_http_proxy_module module allows passing requests to
another server.

2.31.2 Example Configuration

location / {
proxy_pass http://localhost:8000;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;

}

2.31.3 Directives

proxy bind

Syntax: proxy_bind address [transparent] | off;

Default —

Context: http, server, location
This directive appeared in version 0.8.22.

Nginx, Inc. p.148 of 379

CHAPTER 2. HTTP SERVER MODULES 2.31. MODULE NGX HTTP PROXY MODULE

Makes outgoing connections to a proxied server originate from the specified
local IP address with an optional port (1.11.2). Parameter value can contain
variables (1.3.12). The special value off (1.3.12) cancels the effect of the
proxy_bind directive inherited from the previous configuration level, which
allows the system to auto-assign the local IP address and port.

The transparent parameter (1.11.0) allows outgoing connections to a
proxied server originate from a non-local IP address, for example, from a real
IP address of a client:

proxy_bind $remote_addr transparent;

In order for this parameter to work, it is necessary to run nginx worker
processes with the superuser privileges and configure kernel routing table to
intercept network traffic from the proxied server.

proxy buffer size

Syntax: proxy_buffer_size size;

Default 4k|8k

Context: http, server, location

Sets the size of the buffer used for reading the first part of the response
received from the proxied server. This part usually contains a small response
header. By default, the buffer size is equal to one memory page. This is either
4K or 8K, depending on a platform. It can be made smaller, however.

proxy buffering

Syntax: proxy_buffering on | off;

Default on

Context: http, server, location

Enables or disables buffering of responses from the proxied server.
When buffering is enabled, nginx receives a response from the proxied server

as soon as possible, saving it into the buffers set by the proxy buffer size and
proxy buffers directives. If the whole response does not fit into memory, a part
of it can be saved to a temporary file on the disk. Writing to temporary files
is controlled by the proxy max temp file size and proxy temp file write size
directives.

When buffering is disabled, the response is passed to a client synchronously,
immediately as it is received. nginx will not try to read the whole response
from the proxied server. The maximum size of the data that nginx can receive
from the server at a time is set by the proxy buffer size directive.

Buffering can also be enabled or disabled by passing “yes” or “no” in the
X-Accel-Buffering response header field. This capability can be disabled
using the proxy ignore headers directive.

Nginx, Inc. p.149 of 379

CHAPTER 2. HTTP SERVER MODULES 2.31. MODULE NGX HTTP PROXY MODULE

proxy buffers

Syntax: proxy_buffers number size;

Default 8 4k|8k

Context: http, server, location

Sets the number and size of the buffers used for reading a response from
the proxied server, for a single connection. By default, the buffer size is equal
to one memory page. This is either 4K or 8K, depending on a platform.

proxy busy buffers size

Syntax: proxy_busy_buffers_size size;

Default 8k|16k

Context: http, server, location

When buffering of responses from the proxied server is enabled, limits the
total size of buffers that can be busy sending a response to the client while the
response is not yet fully read. In the meantime, the rest of the buffers can be
used for reading the response and, if needed, buffering part of the response to
a temporary file. By default, size is limited by the size of two buffers set by
the proxy buffer size and proxy buffers directives.

proxy cache

Syntax: proxy_cache zone | off;

Default off

Context: http, server, location

Defines a shared memory zone used for caching. The same zone can be
used in several places. Parameter value can contain variables (1.7.9). The off
parameter disables caching inherited from the previous configuration level.

proxy cache bypass

Syntax: proxy_cache_bypass string . . . ;

Default —

Context: http, server, location

Defines conditions under which the response will not be taken from a cache.
If at least one value of the string parameters is not empty and is not equal to
“0” then the response will not be taken from the cache:

proxy_cache_bypass $cookie_nocache $arg_nocache$arg_comment;
proxy_cache_bypass $http_pragma $http_authorization;

Can be used along with the proxy no cache directive.

Nginx, Inc. p.150 of 379

CHAPTER 2. HTTP SERVER MODULES 2.31. MODULE NGX HTTP PROXY MODULE

proxy cache convert head

Syntax: proxy_cache_convert_head on | off;

Default on

Context: http, server, location
This directive appeared in version 1.9.7.

Enables or disables the conversion of the “HEAD” method to “GET” for
caching. When the conversion is disabled, the cache key should be configured
to include the $request method.

proxy cache key

Syntax: proxy_cache_key string;

Default $scheme$proxy_host$request_uri

Context: http, server, location

Defines a key for caching, for example

proxy_cache_key "$host$request_uri $cookie_user";

By default, the directive’s value is close to the string

proxy_cache_key $scheme$proxy_hosturiis_args$args;

proxy cache lock

Syntax: proxy_cache_lock on | off;

Default off

Context: http, server, location
This directive appeared in version 1.1.12.

When enabled, only one request at a time will be allowed to populate a new
cache element identified according to the proxy cache key directive by passing
a request to a proxied server. Other requests of the same cache element will
either wait for a response to appear in the cache or the cache lock for this
element to be released, up to the time set by the proxy cache lock timeout
directive.

proxy cache lock age

Syntax: proxy_cache_lock_age time;

Default 5s

Context: http, server, location
This directive appeared in version 1.7.8.

If the last request passed to the proxied server for populating a new cache
element has not completed for the specified time, one more request may be
passed to the proxied server.

Nginx, Inc. p.151 of 379

CHAPTER 2. HTTP SERVER MODULES 2.31. MODULE NGX HTTP PROXY MODULE

proxy cache lock timeout

Syntax: proxy_cache_lock_timeout time;

Default 5s

Context: http, server, location
This directive appeared in version 1.1.12.

Sets a timeout for proxy cache lock. When the time expires, the request
will be passed to the proxied server, however, the response will not be cached.

Before 1.7.8, the response could be cached.

proxy cache methods

Syntax: proxy_cache_methods GET | HEAD | POST . . . ;

Default GET HEAD

Context: http, server, location
This directive appeared in version 0.7.59.

If the client request method is listed in this directive then the response will
be cached. “GET” and “HEAD” methods are always added to the list, though
it is recommended to specify them explicitly. See also the proxy no cache
directive.

proxy cache min uses

Syntax: proxy_cache_min_uses number;

Default 1

Context: http, server, location

Sets the number of requests after which the response will be cached.

proxy cache path

Syntax: proxy_cache_path path [levels=levels]

[use_temp_path=on|off] keys_zone=name:size [inactive=time]

[max_size=size] [manager_files=number] [manager_sleep=time]

[manager_threshold=time] [loader_files=number]

[loader_sleep=time] [loader_threshold=time]

[purger=on|off] [purger_files=number] [purger_sleep=time]

[purger_threshold=time];

Default —

Context: http

Sets the path and other parameters of a cache. Cache data are stored in
files. The file name in a cache is a result of applying the MD5 function to
the cache key. The levels parameter defines hierarchy levels of a cache:
from 1 to 3, each level accepts values 1 or 2. For example, in the following
configuration

Nginx, Inc. p.152 of 379

CHAPTER 2. HTTP SERVER MODULES 2.31. MODULE NGX HTTP PROXY MODULE

proxy_cache_path /data/nginx/cache levels=1:2 keys_zone=one:10m;

file names in a cache will look like this:

/data/nginx/cache/c/29/b7f54b2df7773722d382f4809d65029c

A cached response is first written to a temporary file, and then the file
is renamed. Starting from version 0.8.9, temporary files and the cache can
be put on different file systems. However, be aware that in this case a file
is copied across two file systems instead of the cheap renaming operation. It
is thus recommended that for any given location both cache and a directory
holding temporary files are put on the same file system. The directory for
temporary files is set based on the use_temp_path parameter (1.7.10). If
this parameter is omitted or set to the value on, the directory set by the
proxy temp path directive for the given location will be used. If the value is
set to off, temporary files will be put directly in the cache directory.

In addition, all active keys and information about data are stored in a
shared memory zone, whose name and size are configured by the keys_zone
parameter. One megabyte zone can store about 8 thousand keys.

Cached data that are not accessed during the time specified by the
inactive parameter get removed from the cache regardless of their freshness.
By default, inactive is set to 10 minutes.

The special “cache manager” process monitors the maximum cache
size set by the max_size parameter. When this size is exceeded,
it removes the least recently used data. The data is removed in
iterations configured by manager_files, manager_threshold, and
manager_sleep parameters (1.11.5). During one iteration no more than
manager_files items are deleted (by default, 100). The duration of one
iteration is limited by the manager_threshold parameter (by default, 200
milliseconds). Between iterations, a pause configured by the manager_sleep
parameter (by default, 50 milliseconds) is made.

A minute after the start the special “cache loader” process is activated. It
loads information about previously cached data stored on file system into a
cache zone. The loading is also done in iterations. During one iteration no
more than loader_files items are loaded (by default, 100). Besides, the
duration of one iteration is limited by the loader_threshold parameter
(by default, 200 milliseconds). Between iterations, a pause configured by the
loader_sleep parameter (by default, 50 milliseconds) is made.

Additionally, the following parameters are available as part of our
commercial subscription:

purger=on|off
Instructs whether cache entries that match a wildcard key will be
removed from the disk by the cache purger (1.7.12). Setting the
parameter to on (default is off) will activate the “cache purger” process
that permanently iterates through all cache entries and deletes the entries
that match the wildcard key.

Nginx, Inc. p.153 of 379

http://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.31. MODULE NGX HTTP PROXY MODULE

purger_files=number
Sets the number of items that will be scanned during one iteration
(1.7.12). By default, purger_files is set to 10.

purger_threshold=number
Sets the duration of one iteration (1.7.12). By default,
purger_threshold is set to 50 milliseconds.

purger_sleep=number
Sets a pause between iterations (1.7.12). By default, purger_sleep is
set to 50 milliseconds.

proxy cache purge

Syntax: proxy_cache_purgestring . . . ;

Default —

Context: http, server, location
This directive appeared in version 1.5.7.

Defines conditions under which the request will be considered a cache purge
request. If at least one value of the string parameters is not empty and
is not equal to “0” then the cache entry with a corresponding cache key is
removed. The result of successful operation is indicated by returning the 204
No Content response.

If the cache key of a purge request ends with an asterisk (“*”), all cache
entries matching the wildcard key will be removed from the cache. However,
these entries will remain on the disk until they are deleted for either inactivity,
or processed by the cache purger (1.7.12), or a client attempts to access them.

Example configuration:

proxy_cache_path /data/nginx/cache keys_zone=cache_zone:10m;

map $request_method $purge_method {
PURGE 1;
default 0;

}

server {
...
location / {

proxy_pass http://backend;
proxy_cache cache_zone;
proxy_cache_key $uri;
proxy_cache_purge $purge_method;

}
}

This functionality is available as part of our commercial subscription.

proxy cache revalidate

Syntax: proxy_cache_revalidate on | off;

Default off

Context: http, server, location

Nginx, Inc. p.154 of 379

http://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.31. MODULE NGX HTTP PROXY MODULE

This directive appeared in version 1.5.7.

Enables revalidation of expired cache items using conditional requests with
the If-Modified-Since and If-None-Match header fields.

proxy cache use stale

Syntax: proxy_cache_use_stale error | timeout | invalid_header |
updating | http_500 | http_502 | http_503 | http_504 |
http_403 | http_404 | off . . . ;

Default off

Context: http, server, location

Determines in which cases a stale cached response can be used when an
error occurs during communication with the proxied server. The directive’s
parameters match the parameters of the proxy next upstream directive.

The error parameter also permits using a stale cached response if a
proxied server to process a request cannot be selected.

Additionally, the updating parameter permits using a stale cached
response if it is currently being updated. This allows minimizing the number
of accesses to proxied servers when updating cached data.

To minimize the number of accesses to proxied servers when populating a
new cache element, the proxy cache lock directive can be used.

proxy cache valid

Syntax: proxy_cache_valid [code . . .] time;

Default —

Context: http, server, location

Sets caching time for different response codes. For example, the following
directives

proxy_cache_valid 200 302 10m;
proxy_cache_valid 404 1m;

set 10 minutes of caching for responses with codes 200 and 302 and 1 minute
for responses with code 404.

If only caching time is specified

proxy_cache_valid 5m;

then only 200, 301, and 302 responses are cached.
In addition, the any parameter can be specified to cache any responses:

proxy_cache_valid 200 302 10m;
proxy_cache_valid 301 1h;
proxy_cache_valid any 1m;

Parameters of caching can also be set directly in the response header. This
has higher priority than setting of caching time using the directive.

Nginx, Inc. p.155 of 379

CHAPTER 2. HTTP SERVER MODULES 2.31. MODULE NGX HTTP PROXY MODULE

• The X-Accel-Expires header field sets caching time of a response in
seconds. The zero value disables caching for a response. If the value
starts with the @ prefix, it sets an absolute time in seconds since Epoch,
up to which the response may be cached.

• If the header does not include the X-Accel-Expires field, parameters
of caching may be set in the header fields Expires or Cache-Control.

• If the header includes the Set-Cookie field, such a response will not
be cached.

• If the header includes the Vary field with the special value “*”, such a
response will not be cached (1.7.7). If the header includes the Vary field
with another value, such a response will be cached taking into account
the corresponding request header fields (1.7.7).

Processing of one or more of these response header fields can be disabled using
the proxy ignore headers directive.

proxy connect timeout

Syntax: proxy_connect_timeout time;

Default 60s

Context: http, server, location

Defines a timeout for establishing a connection with a proxied server. It
should be noted that this timeout cannot usually exceed 75 seconds.

proxy cookie domain

Syntax: proxy_cookie_domain off;

Syntax: proxy_cookie_domain domain replacement;

Default off

Context: http, server, location
This directive appeared in version 1.1.15.

Sets a text that should be changed in the domain attribute of the
Set-Cookie header fields of a proxied server response. Suppose a
proxied server returned the Set-Cookie header field with the attribute
“domain=localhost”. The directive

proxy_cookie_domain localhost example.org;

will rewrite this attribute to “domain=example.org”.
A dot at the beginning of the domain and replacement strings and the

domain attribute is ignored. Matching is case-insensitive.
The domain and replacement strings can contain variables:

proxy_cookie_domain www.$host $host;

Nginx, Inc. p.156 of 379

CHAPTER 2. HTTP SERVER MODULES 2.31. MODULE NGX HTTP PROXY MODULE

The directive can also be specified using regular expressions. In this case,
domain should start from the “~” symbol. A regular expression can contain
named and positional captures, and replacement can reference them:

proxy_cookie_domain ~\.(?P<sl_domain>[-0-9a-z]+\.[a-z]+)$ $sl_domain;

There could be several proxy_cookie_domain directives:

proxy_cookie_domain localhost example.org;
proxy_cookie_domain ~\.([a-z]+\.[a-z]+)$ $1;

The off parameter cancels the effect of all proxy_cookie_domain
directives on the current level:

proxy_cookie_domain off;
proxy_cookie_domain localhost example.org;
proxy_cookie_domain www.example.org example.org;

proxy cookie path

Syntax: proxy_cookie_path off;

Syntax: proxy_cookie_path path replacement;

Default off

Context: http, server, location
This directive appeared in version 1.1.15.

Sets a text that should be changed in the path attribute of the
Set-Cookie header fields of a proxied server response. Suppose a
proxied server returned the Set-Cookie header field with the attribute
“path=/two/some/uri/”. The directive

proxy_cookie_path /two/ /;

will rewrite this attribute to “path=/some/uri/”.
The path and replacement strings can contain variables:

proxy_cookie_path $uri /some$uri;

The directive can also be specified using regular expressions. In this case,
path should either start from the “~” symbol for a case-sensitive matching, or
from the “~*” symbols for case-insensitive matching. The regular expression
can contain named and positional captures, and replacement can reference
them:

proxy_cookie_path ~*^/user/([^/]+) /u/$1;

There could be several proxy_cookie_path directives:

proxy_cookie_path /one/ /;
proxy_cookie_path / /two/;

Nginx, Inc. p.157 of 379

CHAPTER 2. HTTP SERVER MODULES 2.31. MODULE NGX HTTP PROXY MODULE

The off parameter cancels the effect of all proxy_cookie_path
directives on the current level:

proxy_cookie_path off;
proxy_cookie_path /two/ /;
proxy_cookie_path ~*^/user/([^/]+) /u/$1;

proxy force ranges

Syntax: proxy_force_ranges on | off;

Default off

Context: http, server, location
This directive appeared in version 1.7.7.

Enables byte-range support for both cached and uncached responses from
the proxied server regardless of the Accept-Ranges field in these responses.

proxy headers hash bucket size

Syntax: proxy_headers_hash_bucket_size size;

Default 64

Context: http, server, location

Sets the bucket size for hash tables used by the proxy hide header and
proxy set header directives. The details of setting up hash tables are provided
in a separate document.

proxy headers hash max size

Syntax: proxy_headers_hash_max_size size;

Default 512

Context: http, server, location

Sets the maximum size of hash tables used by the proxy hide header and
proxy set header directives. The details of setting up hash tables are provided
in a separate document.

proxy hide header

Syntax: proxy_hide_header field;

Default —

Context: http, server, location

By default, nginx does not pass the header fields Date, Server, X-Pad,
and X-Accel-... from the response of a proxied server to a client. The
proxy_hide_header directive sets additional fields that will not be passed.
If, on the contrary, the passing of fields needs to be permitted, the proxy -
pass header directive can be used.

Nginx, Inc. p.158 of 379

CHAPTER 2. HTTP SERVER MODULES 2.31. MODULE NGX HTTP PROXY MODULE

proxy http version

Syntax: proxy_http_version 1.0 | 1.1;

Default 1.0

Context: http, server, location
This directive appeared in version 1.1.4.

Sets the HTTP protocol version for proxying. By default, version 1.0 is
used. Version 1.1 is recommended for use with keepalive connections and
NTLM authentication.

proxy ignore client abort

Syntax: proxy_ignore_client_abort on | off;

Default off

Context: http, server, location

Determines whether the connection with a proxied server should be closed
when a client closes the connection without waiting for a response.

proxy ignore headers

Syntax: proxy_ignore_headers field . . . ;

Default —

Context: http, server, location

Disables processing of certain response header fields from
the proxied server. The following fields can be ignored:
X-Accel-Redirect, X-Accel-Expires, X-Accel-Limit-Rate
(1.1.6), X-Accel-Buffering (1.1.6), X-Accel-Charset (1.1.6),
Expires, Cache-Control, Set-Cookie (0.8.44), and Vary (1.7.7).

If not disabled, processing of these header fields has the following effect:

• X-Accel-Expires, Expires, Cache-Control, Set-Cookie, and
Vary set the parameters of response caching;

• X-Accel-Redirect performs an internal redirect to the specified URI;

• X-Accel-Limit-Rate sets the rate limit for transmission of a
response to a client;

• X-Accel-Buffering enables or disables buffering of a response;

• X-Accel-Charset sets the desired charset of a response.

proxy intercept errors

Syntax: proxy_intercept_errors on | off;

Default off

Context: http, server, location

Nginx, Inc. p.159 of 379

CHAPTER 2. HTTP SERVER MODULES 2.31. MODULE NGX HTTP PROXY MODULE

Determines whether proxied responses with codes greater than or equal to
300 should be passed to a client or be intercepted and redirected to nginx for
processing with the error page directive.

proxy limit rate

Syntax: proxy_limit_rate rate;

Default 0

Context: http, server, location
This directive appeared in version 1.7.7.

Limits the speed of reading the response from the proxied server. The rate
is specified in bytes per second. The zero value disables rate limiting. The limit
is set per a request, and so if nginx simultaneously opens two connections to
the proxied server, the overall rate will be twice as much as the specified limit.
The limitation works only if buffering of responses from the proxied server is
enabled.

proxy max temp file size

Syntax: proxy_max_temp_file_size size;

Default 1024m

Context: http, server, location

When buffering of responses from the proxied server is enabled, and the
whole response does not fit into the buffers set by the proxy buffer size and
proxy buffers directives, a part of the response can be saved to a temporary file.
This directive sets the maximum size of the temporary file. The size of data
written to the temporary file at a time is set by the proxy temp file write size
directive.

The zero value disables buffering of responses to temporary files.

This restriction does not apply to responses that will be cached or stored
on disk.

proxy method

Syntax: proxy_method method;

Default —

Context: http, server, location

Specifies the HTTP method to use in requests forwarded to the proxied
server instead of the method from the client request.

Nginx, Inc. p.160 of 379

CHAPTER 2. HTTP SERVER MODULES 2.31. MODULE NGX HTTP PROXY MODULE

proxy next upstream

Syntax: proxy_next_upstream error | timeout | invalid_header |
http_500 | http_502 | http_503 | http_504 | http_403 |
http_404 | non_idempotent | off . . . ;

Default error timeout

Context: http, server, location

Specifies in which cases a request should be passed to the next server:

error
an error occurred while establishing a connection with the server, passing
a request to it, or reading the response header;

timeout
a timeout has occurred while establishing a connection with the server,
passing a request to it, or reading the response header;

invalid_header
a server returned an empty or invalid response;

http_500
a server returned a response with the code 500;

http_502
a server returned a response with the code 502;

http_503
a server returned a response with the code 503;

http_504
a server returned a response with the code 504;

http_403
a server returned a response with the code 403;

http_404
a server returned a response with the code 404;

non_idempotent
normally, requests with a non-idempotent method (POST, LOCK, PATCH)
are not passed to the next server if a request has been sent to an
upstream server (1.9.13); enabling this option explicitly allows retrying
such requests;

off
disables passing a request to the next server.

One should bear in mind that passing a request to the next server is only
possible if nothing has been sent to a client yet. That is, if an error or timeout
occurs in the middle of the transferring of a response, fixing this is impossible.

The directive also defines what is considered an unsuccessful attempt
of communication with a server. The cases of error, timeout and
invalid_header are always considered unsuccessful attempts, even if they
are not specified in the directive. The cases of http_500, http_502,
http_503 and http_504 are considered unsuccessful attempts only if they
are specified in the directive. The cases of http_403 and http_404 are
never considered unsuccessful attempts.

Nginx, Inc. p.161 of 379

http://tools.ietf.org/html/rfc7231#section-4.2.2

CHAPTER 2. HTTP SERVER MODULES 2.31. MODULE NGX HTTP PROXY MODULE

Passing a request to the next server can be limited by the number of tries
and by time.

proxy next upstream timeout

Syntax: proxy_next_upstream_timeout time;

Default 0

Context: http, server, location
This directive appeared in version 1.7.5.

Limits the time during which a request can be passed to the next server.
The 0 value turns off this limitation.

proxy next upstream tries

Syntax: proxy_next_upstream_tries number;

Default 0

Context: http, server, location
This directive appeared in version 1.7.5.

Limits the number of possible tries for passing a request to the next server.
The 0 value turns off this limitation.

proxy no cache

Syntax: proxy_no_cache string . . . ;

Default —

Context: http, server, location

Defines conditions under which the response will not be saved to a cache.
If at least one value of the string parameters is not empty and is not equal to
“0” then the response will not be saved:

proxy_no_cache $cookie_nocache $arg_nocache$arg_comment;
proxy_no_cache $http_pragma $http_authorization;

Can be used along with the proxy cache bypass directive.

proxy pass

Syntax: proxy_pass URL;

Default —

Context: location, if in location, limit except

Sets the protocol and address of a proxied server and an optional URI to
which a location should be mapped. As a protocol, “http” or “https” can be
specified. The address can be specified as a domain name or IP address, and
an optional port:

proxy_pass http://localhost:8000/uri/;

Nginx, Inc. p.162 of 379

CHAPTER 2. HTTP SERVER MODULES 2.31. MODULE NGX HTTP PROXY MODULE

or as a UNIX-domain socket path specified after the word “unix” and
enclosed in colons:

proxy_pass http://unix:/tmp/backend.socket:/uri/;

If a domain name resolves to several addresses, all of them will be used
in a round-robin fashion. In addition, an address can be specified as a server
group.

A request URI is passed to the server as follows:

• If the proxy_pass directive is specified with a URI, then when a request
is passed to the server, the part of a normalized request URI matching
the location is replaced by a URI specified in the directive:

location /name/ {
proxy_pass http://127.0.0.1/remote/;

}

• If proxy_pass is specified without a URI, the request URI is passed to
the server in the same form as sent by a client when the original request is
processed, or the full normalized request URI is passed when processing
the changed URI:

location /some/path/ {
proxy_pass http://127.0.0.1;

}

Before version 1.1.12, if proxy_pass is specified without a URI, the
original request URI might be passed instead of the changed URI in
some cases.

In some cases, the part of a request URI to be replaced cannot be
determined:

• When location is specified using a regular expression.

In this case, the directive should be specified without a URI.

• When the URI is changed inside a proxied location using the rewrite
directive, and this same configuration will be used to process a request
(break):

location /name/ {
rewrite /name/([^/]+) /users?name=$1 break;
proxy_pass http://127.0.0.1;

}

In this case, the URI specified in the directive is ignored and the full
changed request URI is passed to the server.

Nginx, Inc. p.163 of 379

CHAPTER 2. HTTP SERVER MODULES 2.31. MODULE NGX HTTP PROXY MODULE

A server name, its port and the passed URI can also be specified using
variables:

proxy_pass http://$host$uri;

or even like this:

proxy_pass $request;

In this case, the server name is searched among the described server groups,
and, if not found, is determined using a resolver.

WebSocket proxying requires special configuration and is supported since
version 1.3.13.

proxy pass header

Syntax: proxy_pass_header field;

Default —

Context: http, server, location

Permits passing otherwise disabled header fields from a proxied server to a
client.

proxy pass request body

Syntax: proxy_pass_request_body on | off;

Default on

Context: http, server, location

Indicates whether the original request body is passed to the proxied server.

location /x-accel-redirect-here/ {
proxy_method GET;
proxy_pass_request_body off;
proxy_set_header Content-Length "";

proxy_pass ...
}

See also the proxy set header and proxy pass request headers directives.

proxy pass request headers

Syntax: proxy_pass_request_headers on | off;

Default on

Context: http, server, location

Indicates whether the header fields of the original request are passed to the
proxied server.

location /x-accel-redirect-here/ {
proxy_method GET;
proxy_pass_request_headers off;

Nginx, Inc. p.164 of 379

http://nginx.org/en/docs/http/websocket.html

CHAPTER 2. HTTP SERVER MODULES 2.31. MODULE NGX HTTP PROXY MODULE

proxy_pass_request_body off;

proxy_pass ...
}

See also the proxy set header and proxy pass request body directives.

proxy read timeout

Syntax: proxy_read_timeout time;

Default 60s

Context: http, server, location

Defines a timeout for reading a response from the proxied server. The
timeout is set only between two successive read operations, not for the
transmission of the whole response. If the proxied server does not transmit
anything within this time, the connection is closed.

proxy redirect

Syntax: proxy_redirect default;

Syntax: proxy_redirect off;

Syntax: proxy_redirect redirect replacement;

Default default

Context: http, server, location

Sets the text that should be changed in the Location
and Refresh header fields of a proxied server re-
sponse. Suppose a proxied server returned the header field
“Location: http://localhost:8000/two/some/uri/”. The
directive

proxy_redirect http://localhost:8000/two/ http://frontend/one/;

will rewrite this string to“Location: http://frontend/one/some/uri/”.
A server name may be omitted in the replacement string:

proxy_redirect http://localhost:8000/two/ /;

then the primary server’s name and port, if different from 80, will be
inserted.

The default replacement specified by the default parameter uses the
parameters of the location and proxy pass directives. Hence, the two
configurations below are equivalent:

location /one/ {
proxy_pass http://upstream:port/two/;
proxy_redirect default;

Nginx, Inc. p.165 of 379

CHAPTER 2. HTTP SERVER MODULES 2.31. MODULE NGX HTTP PROXY MODULE

location /one/ {
proxy_pass http://upstream:port/two/;
proxy_redirect http://upstream:port/two/ /one/;

The default parameter is not permitted if proxy pass is specified using
variables.

A replacement string can contain variables:

proxy_redirect http://localhost:8000/ http://$host:$server_port/;

A redirect can also contain (1.1.11) variables:

proxy_redirect http://$proxy_host:8000/ /;

The directive can be specified (1.1.11) using regular expressions. In this
case, redirect should either start with the “~” symbol for a case-sensitive
matching, or with the “~*” symbols for case-insensitive matching. The regular
expression can contain named and positional captures, and replacement can
reference them:

proxy_redirect ~^(http://[^:]+):\d+(/.+)$ $1$2;
proxy_redirect ~*/user/([^/]+)/(.+)$ http://$1.example.com/$2;

There could be several proxy_redirect directives:

proxy_redirect default;
proxy_redirect http://localhost:8000/ /;
proxy_redirect http://www.example.com/ /;

The off parameter cancels the effect of all proxy_redirect directives
on the current level:

proxy_redirect off;
proxy_redirect default;
proxy_redirect http://localhost:8000/ /;
proxy_redirect http://www.example.com/ /;

Using this directive, it is also possible to add host names to relative redirects
issued by a proxied server:

proxy_redirect / /;

proxy request buffering

Syntax: proxy_request_buffering on | off;

Default on

Context: http, server, location
This directive appeared in version 1.7.11.

Enables or disables buffering of a client request body.

Nginx, Inc. p.166 of 379

CHAPTER 2. HTTP SERVER MODULES 2.31. MODULE NGX HTTP PROXY MODULE

When buffering is enabled, the entire request body is read from the client
before sending the request to a proxied server.

When buffering is disabled, the request body is sent to the proxied server
immediately as it is received. In this case, the request cannot be passed to the
next server if nginx already started sending the request body.

When HTTP/1.1 chunked transfer encoding is used to send the original
request body, the request body will be buffered regardless of the directive
value unless HTTP/1.1 is enabled for proxying.

proxy send lowat

Syntax: proxy_send_lowat size;

Default 0

Context: http, server, location

If the directive is set to a non-zero value, nginx will try to minimize the
number of send operations on outgoing connections to a proxied server by using
either NOTE_LOWAT flag of the kqueue method, or the SO_SNDLOWAT socket
option, with the specified size.

This directive is ignored on Linux, Solaris, and Windows.

proxy send timeout

Syntax: proxy_send_timeout time;

Default 60s

Context: http, server, location

Sets a timeout for transmitting a request to the proxied server. The timeout
is set only between two successive write operations, not for the transmission of
the whole request. If the proxied server does not receive anything within this
time, the connection is closed.

proxy set body

Syntax: proxy_set_body value;

Default —

Context: http, server, location

Allows redefining the request body passed to the proxied server. The value
can contain text, variables, and their combination.

proxy set header

Syntax: proxy_set_header field value;

Default Host $proxy_host

Default Connection close

Context: http, server, location

Allows redefining or appending fields to the request header passed to the
proxied server. The value can contain text, variables, and their combinations.

Nginx, Inc. p.167 of 379

CHAPTER 2. HTTP SERVER MODULES 2.31. MODULE NGX HTTP PROXY MODULE

These directives are inherited from the previous level if and only if there are
no proxy_set_header directives defined on the current level. By default,
only two fields are redefined:

proxy_set_header Host $proxy_host;
proxy_set_header Connection close;

If caching is enabled, the header fields If-Modified-Since,
If-Unmodified-Since, If-None-Match, If-Match, Range, and
If-Range from the original request are not passed to the proxied server.

An unchanged Host request header field can be passed like this:

proxy_set_header Host $http_host;

However, if this field is not present in a client request header then nothing
will be passed. In such a case it is better to use the $host variable - its value
equals the server name in the Host request header field or the primary server
name if this field is not present:

proxy_set_header Host $host;

In addition, the server name can be passed together with the port of the
proxied server:

proxy_set_header Host $host:$proxy_port;

If the value of a header field is an empty string then this field will not be
passed to a proxied server:

proxy_set_header Accept-Encoding "";

proxy ssl certificate

Syntax: proxy_ssl_certificate file;

Default —

Context: http, server, location
This directive appeared in version 1.7.8.

Specifies a file with the certificate in the PEM format used for
authentication to a proxied HTTPS server.

proxy ssl certificate key

Syntax: proxy_ssl_certificate_key file;

Default —

Context: http, server, location
This directive appeared in version 1.7.8.

Specifies a file with the secret key in the PEM format used for
authentication to a proxied HTTPS server.

Nginx, Inc. p.168 of 379

CHAPTER 2. HTTP SERVER MODULES 2.31. MODULE NGX HTTP PROXY MODULE

The value engine:name:id can be specified instead of the file (1.7.9), which
loads a secret key with a specified id from the OpenSSL engine name.

proxy ssl ciphers

Syntax: proxy_ssl_ciphers ciphers;

Default DEFAULT

Context: http, server, location
This directive appeared in version 1.5.6.

Specifies the enabled ciphers for requests to a proxied HTTPS server. The
ciphers are specified in the format understood by the OpenSSL library.

The full list can be viewed using the “openssl ciphers” command.

proxy ssl crl

Syntax: proxy_ssl_crl file;

Default —

Context: http, server, location
This directive appeared in version 1.7.0.

Specifies a file with revoked certificates (CRL) in the PEM format used to
verify the certificate of the proxied HTTPS server.

proxy ssl name

Syntax: proxy_ssl_name name;

Default $proxy_host

Context: http, server, location
This directive appeared in version 1.7.0.

Allows overriding the server name used to verify the certificate of the
proxied HTTPS server and to be passed through SNI when establishing a
connection with the proxied HTTPS server.

By default, the host part of the proxy pass URL is used.

proxy ssl password file

Syntax: proxy_ssl_password_file file;

Default —

Context: http, server, location
This directive appeared in version 1.7.8.

Specifies a file with passphrases for secret keys where each passphrase is
specified on a separate line. Passphrases are tried in turn when loading the
key.

Nginx, Inc. p.169 of 379

CHAPTER 2. HTTP SERVER MODULES 2.31. MODULE NGX HTTP PROXY MODULE

proxy ssl server name

Syntax: proxy_ssl_server_name on | off;

Default off

Context: http, server, location
This directive appeared in version 1.7.0.

Enables or disables passing of the server name through TLS Server Name
Indication extension (SNI, RFC 6066) when establishing a connection with the
proxied HTTPS server.

proxy ssl session reuse

Syntax: proxy_ssl_session_reuse on | off;

Default on

Context: http, server, location

Determines whether SSL sessions can be reused
when working with the proxied server. If the errors
“SSL3_GET_FINISHED:digest check failed” appear in the logs,
try disabling session reuse.

proxy ssl protocols

Syntax: proxy_ssl_protocols [SSLv2] [SSLv3] [TLSv1] [TLSv1.1]

[TLSv1.2];

Default TLSv1 TLSv1.1 TLSv1.2

Context: http, server, location
This directive appeared in version 1.5.6.

Enables the specified protocols for requests to a proxied HTTPS server.

proxy ssl trusted certificate

Syntax: proxy_ssl_trusted_certificate file;

Default —

Context: http, server, location
This directive appeared in version 1.7.0.

Specifies a file with trusted CA certificates in the PEM format used to
verify the certificate of the proxied HTTPS server.

proxy ssl verify

Syntax: proxy_ssl_verify on | off;

Default off

Context: http, server, location
This directive appeared in version 1.7.0.

Enables or disables verification of the proxied HTTPS server certificate.

Nginx, Inc. p.170 of 379

http://en.wikipedia.org/wiki/Server_Name_Indication
http://en.wikipedia.org/wiki/Server_Name_Indication

CHAPTER 2. HTTP SERVER MODULES 2.31. MODULE NGX HTTP PROXY MODULE

proxy ssl verify depth

Syntax: proxy_ssl_verify_depth number;

Default 1

Context: http, server, location
This directive appeared in version 1.7.0.

Sets the verification depth in the proxied HTTPS server certificates chain.

proxy store

Syntax: proxy_store on | off | string;

Default off

Context: http, server, location

Enables saving of files to a disk. The on parameter saves files with paths
corresponding to the directives alias or root. The off parameter disables
saving of files. In addition, the file name can be set explicitly using the string
with variables:

proxy_store /data/www$original_uri;

The modification time of files is set according to the received
Last-Modified response header field. The response is first written to a
temporary file, and then the file is renamed. Starting from version 0.8.9,
temporary files and the persistent store can be put on different file systems.
However, be aware that in this case a file is copied across two file systems
instead of the cheap renaming operation. It is thus recommended that for any
given location both saved files and a directory holding temporary files, set by
the proxy temp path directive, are put on the same file system.

This directive can be used to create local copies of static unchangeable files,
e.g.:

location /images/ {
root /data/www;
error_page 404 = /fetch$uri;

}

location /fetch/ {
internal;

proxy_pass http://backend/;
proxy_store on;
proxy_store_access user:rw group:rw all:r;
proxy_temp_path /data/temp;

alias /data/www/;
}

or like this:

location /images/ {
root /data/www;
error_page 404 = @fetch;

}

Nginx, Inc. p.171 of 379

CHAPTER 2. HTTP SERVER MODULES 2.31. MODULE NGX HTTP PROXY MODULE

location @fetch {
internal;

proxy_pass http://backend;
proxy_store on;
proxy_store_access user:rw group:rw all:r;
proxy_temp_path /data/temp;

root /data/www;
}

proxy store access

Syntax: proxy_store_access users:permissions . . . ;

Default user:rw

Context: http, server, location

Sets access permissions for newly created files and directories, e.g.:

proxy_store_access user:rw group:rw all:r;

If any group or all access permissions are specified then user
permissions may be omitted:

proxy_store_access group:rw all:r;

proxy temp file write size

Syntax: proxy_temp_file_write_size size;

Default 8k|16k

Context: http, server, location

Limits the size of data written to a temporary file at a time, when buffering
of responses from the proxied server to temporary files is enabled. By default,
size is limited by two buffers set by the proxy buffer size and proxy buffers
directives. The maximum size of a temporary file is set by the proxy max -
temp file size directive.

proxy temp path

Syntax: proxy_temp_path path [level1 [level2 [level3]]];

Default proxy_temp

Context: http, server, location

Defines a directory for storing temporary files with data received from
proxied servers. Up to three-level subdirectory hierarchy can be used
underneath the specified directory. For example, in the following configuration

proxy_temp_path /spool/nginx/proxy_temp 1 2;

a temporary file might look like this:

Nginx, Inc. p.172 of 379

CHAPTER 2. HTTP SERVER MODULES 2.31. MODULE NGX HTTP PROXY MODULE

/spool/nginx/proxy_temp/7/45/00000123457

See also the use_temp_path parameter of the proxy cache path
directive.

2.31.4 Embedded Variables

The ngx_http_proxy_module module supports embedded variables
that can be used to compose headers using the proxy set header directive:

$proxy host
name and port of a proxied server as specified in the proxy pass directive;

$proxy port
port of a proxied server as specified in the proxy pass directive, or the
protocol’s default port;

$proxy add x forwarded for
the X-Forwarded-For client request header field with the
$remote addr variable appended to it, separated by a comma. If the
X-Forwarded-For field is not present in the client request header, the
$proxy add x forwarded for variable is equal to the $remote addr vari-
able.

Nginx, Inc. p.173 of 379

CHAPTER 2. HTTP SERVER MODULES 2.32. MODULE NGX HTTP RANDOM INDEX MODULE

2.32 Module ngx http random index module

2.32.1 Summary . 174
2.32.2 Example Configuration 174
2.32.3 Directives . 174

random index . 174

2.32.1 Summary

The ngx_http_random_index_module module processes requests
ending with the slash character (‘/’) and picks a random file in a directory
to serve as an index file. The module is processed before the ngx http index -
module module.

This module is not built by default, it should be enabled with the
--with-http_random_index_module configuration parameter.

2.32.2 Example Configuration

location / {
random_index on;

}

2.32.3 Directives

random index

Syntax: random_index on | off;

Default off

Context: location

Enables or disables module processing in a surrounding location.

Nginx, Inc. p.174 of 379

CHAPTER 2. HTTP SERVER MODULES 2.33. MODULE NGX HTTP REALIP MODULE

2.33 Module ngx http realip module

2.33.1 Summary . 175
2.33.2 Example Configuration 175
2.33.3 Directives . 175

set real ip from . 175
real ip header . 175
real ip recursive . 176

2.33.4 Embedded Variables . 176

2.33.1 Summary

The ngx_http_realip_module module is used to change the client
address and optional port to the one sent in the specified header fields.

This module is not built by default, it should be enabled with the
--with-http_realip_module configuration parameter.

2.33.2 Example Configuration

set_real_ip_from 192.168.1.0/24;
set_real_ip_from 192.168.2.1;
set_real_ip_from 2001:0db8::/32;
real_ip_header X-Forwarded-For;
real_ip_recursive on;

2.33.3 Directives

set real ip from

Syntax: set_real_ip_from address | CIDR | unix:;

Default —

Context: http, server, location

Defines trusted addresses that are known to send correct replacement
addresses. If the special value unix: is specified, all UNIX-domain sockets
will be trusted.

IPv6 addresses are supported starting from versions 1.3.0 and 1.2.1.

real ip header

Syntax: real_ip_header field | X-Real-IP | X-Forwarded-For |
proxy_protocol;

Default X-Real-IP

Context: http, server, location

Defines the request header field whose value will be used to replace the
client address.

Nginx, Inc. p.175 of 379

CHAPTER 2. HTTP SERVER MODULES 2.33. MODULE NGX HTTP REALIP MODULE

The X-Real-IP and X-Forwarded-For parameters may contain an
optional port (1.11.0). The address and port should be specified according to
RFC 3986.

The proxy_protocol parameter (1.5.12) changes the client address to
the one from the PROXY protocol header. The PROXY protocol must be
previously enabled by setting the proxy_protocol parameter in the listen
directive.

real ip recursive

Syntax: real_ip_recursive on | off;

Default off

Context: http, server, location
This directive appeared in versions 1.3.0 and 1.2.1.

If recursive search is disabled, the original client address that matches one of
the trusted addresses is replaced by the last address sent in the request header
field defined by the real ip header directive. If recursive search is enabled, the
original client address that matches one of the trusted addresses is replaced by
the last non-trusted address sent in the request header field.

2.33.4 Embedded Variables

$realip remote addr
keeps the original client address (1.9.7)

$realip remote port
keeps the original client port (1.11.0)

Nginx, Inc. p.176 of 379

http://tools.ietf.org/html/3986

CHAPTER 2. HTTP SERVER MODULES 2.34. MODULE NGX HTTP REFERER MODULE

2.34 Module ngx http referer module

2.34.1 Summary . 177
2.34.2 Example Configuration 177
2.34.3 Directives . 177

referer hash bucket size 177
referer hash max size . 177
valid referers . 178

2.34.4 Embedded Variables . 178

2.34.1 Summary

The ngx_http_referer_module module is used to block access to a
site for requests with invalid values in the Referer header field. It should
be kept in mind that fabricating a request with an appropriate Referer field
value is quite easy, and so the intended purpose of this module is not to block
such requests thoroughly but to block the mass flow of requests sent by regular
browsers. It should also be taken into consideration that regular browsers may
not send the Referer field even for valid requests.

2.34.2 Example Configuration

valid_referers none blocked server_names

.example.com example. www.example.org/galleries/
~\.google\.;

if ($invalid_referer) {
return 403;

}

2.34.3 Directives

referer hash bucket size

Syntax: referer_hash_bucket_size size;

Default 64

Context: server, location
This directive appeared in version 1.0.5.

Sets the bucket size for the valid referers hash tables. The details of setting
up hash tables are provided in a separate document.

referer hash max size

Syntax: referer_hash_max_size size;

Default 2048

Context: server, location
This directive appeared in version 1.0.5.

Nginx, Inc. p.177 of 379

CHAPTER 2. HTTP SERVER MODULES 2.34. MODULE NGX HTTP REFERER MODULE

Sets the maximum size of the valid referers hash tables. The details of
setting up hash tables are provided in a separate document.

valid referers

Syntax: valid_referers none | blocked | server_names | string . . . ;

Default —

Context: server, location

Specifies the Referer request header field values that will cause the
embedded $invalid referer variable to be set to an empty string. Otherwise,
the variable will be set to “1”. Search for a match is case-insensitive.

Parameters can be as follows:

none
the Referer field is missing in the request header;

blocked
the Referer field is present in the request header, but its value has
been deleted by a firewall or proxy server; such values are strings that
do not start with “http://” or “https://”;

server_names
the Referer request header field contains one of the server names;

arbitrary string
defines a server name and an optional URI prefix. A server name can
have an “*” at the beginning or end. During the checking, the server’s
port in the Referer field is ignored;

regular expression
the first symbol should be a “~”. It should be noted that an expression
will be matched against the text starting after the “http://” or
“https://”.

Example:

valid_referers none blocked server_names

.example.com example. www.example.org/galleries/
~\.google\.;

2.34.4 Embedded Variables

$invalid referer
Empty string, if the Referer request header field value is considered
valid, otherwise “1”.

Nginx, Inc. p.178 of 379

CHAPTER 2. HTTP SERVER MODULES 2.35. MODULE NGX HTTP REWRITE MODULE

2.35 Module ngx http rewrite module

2.35.1 Summary . 179
2.35.2 Directives . 179

break . 179
if . 180
return . 181
rewrite . 181
rewrite log . 183
set . 183
uninitialized variable warn 183

2.35.3 Internal Implementation 183

2.35.1 Summary

The ngx_http_rewrite_module module is used to change request URI
using PCRE regular expressions, return redirects, and conditionally select
configurations.

The ngx_http_rewrite_module module directives are processed in the
following order:

• the directives of this module specified on the server level are executed
sequentially;

• repeatedly:

– a location is searched based on a request URI;

– the directives of this module specified inside the found location are
executed sequentially;

– the loop is repeated if a request URI was rewritten, but not more
than 10 times.

2.35.2 Directives

break

Syntax: break;

Default —

Context: server, location, if

Stops processing the current set of ngx_http_rewrite_module
directives.

If a directive is specified inside the location, further processing of the
request continues in this location.

Example:

Nginx, Inc. p.179 of 379

CHAPTER 2. HTTP SERVER MODULES 2.35. MODULE NGX HTTP REWRITE MODULE

if ($slow) {
limit_rate 10k;
break;

}

if

Syntax: if (condition) { . . . }
Default —

Context: server, location

The specified condition is evaluated. If true, this module directives specified
inside the braces are executed, and the request is assigned the configuration
inside the if directive. Configurations inside the if directives are inherited
from the previous configuration level.

A condition may be any of the following:

• a variable name; false if the value of a variable is an empty string or “0”;

Before version 1.0.1, any string starting with “0” was considered a false
value.

• comparison of a variable with a string using the “=” and “!=” operators;

• matching of a variable against a regular expression using the“~”(for case-
sensitive matching) and “~*” (for case-insensitive matching) operators.
Regular expressions can contain captures that are made available for later
reuse in the $1..$9 variables. Negative operators “!~” and “!~*” are also
available. If a regular expression includes the “}” or “;” characters, the
whole expressions should be enclosed in single or double quotes.

• checking of a file existence with the “-f” and “!-f” operators;

• checking of a directory existence with the “-d” and “!-d” operators;

• checking of a file, directory, or symbolic link existence with the “-e” and
“!-e” operators;

• checking for an executable file with the “-x” and “!-x” operators.

Examples:

if ($http_user_agent ~ MSIE) {
rewrite ^(.*)$ /msie/$1 break;

}

if ($http_cookie ~* "id=([^;]+)(?:;|$)") {
set $id $1;

}

if ($request_method = POST) {
return 405;

Nginx, Inc. p.180 of 379

CHAPTER 2. HTTP SERVER MODULES 2.35. MODULE NGX HTTP REWRITE MODULE

}

if ($slow) {
limit_rate 10k;

}

if ($invalid_referer) {
return 403;

}

A value of the $invalid referer embedded variable is set by the valid -
referers directive.

return

Syntax: return code [text];

Syntax: return code URL;

Syntax: return URL;

Default —

Context: server, location, if

Stops processing and returns the specified code to a client. The non-
standard code 444 closes a connection without sending a response header.

Starting from version 0.8.42, it is possible to specify either a redirect URL
(for codes 301, 302, 303, and 307), or the response body text (for other codes).
A response body text and redirect URL can contain variables. As a special
case, a redirect URL can be specified as a URI local to this server, in which
case the full redirect URL is formed according to the request scheme ($scheme)
and the server name in redirect and port in redirect directives.

In addition, a URL for temporary redirect with the code 302 can be specified
as the sole parameter. Such a parameter should start with the “http://”,
“https://”, or “$scheme” string. A URL can contain variables.

Only the following codes could be returned before version 0.7.51: 204,
400, 402 — 406, 408, 410, 411, 413, 416, and 500 — 504.

The code 307 was not treated as a redirect until versions 1.1.16 and 1.0.13.

See also the error page directive.

rewrite

Syntax: rewrite regex replacement [flag];

Default —

Context: server, location, if

If the specified regular expression matches a request URI, URI is changed
as specified in the replacement string. The rewrite directives are executed
sequentially in order of their appearance in the configuration file. It is possible
to terminate further processing of the directives using flags. If a replacement

Nginx, Inc. p.181 of 379

CHAPTER 2. HTTP SERVER MODULES 2.35. MODULE NGX HTTP REWRITE MODULE

string starts with “http://” or “https://”, the processing stops and the
redirect is returned to a client.

An optional flag parameter can be one of:

last
stops processing the current set of ngx_http_rewrite_module
directives and starts a search for a new location matching the changed
URI;

break
stops processing the current set of ngx_http_rewrite_module
directives as with the break directive;

redirect
returns a temporary redirect with the 302 code; used if a replacement
string does not start with “http://” or “https://”;

permanent
returns a permanent redirect with the 301 code.

The full redirect URL is formed according to the request scheme ($scheme)
and the server name in redirect and port in redirect directives.

Example:

server {
...
rewrite ^(/download/.*)/media/(.*)\..*$ $1/mp3/$2.mp3 last;
rewrite ^(/download/.*)/audio/(.*)\..*$ $1/mp3/$2.ra last;
return 403;
...

}

But if these directives are put inside the“/download/”location, the last
flag should be replaced by break, or otherwise nginx will make 10 cycles and
return the 500 error:

location /download/ {
rewrite ^(/download/.*)/media/(.*)\..*$ $1/mp3/$2.mp3 break;
rewrite ^(/download/.*)/audio/(.*)\..*$ $1/mp3/$2.ra break;
return 403;

}

If a replacement string includes the new request arguments, the previous
request arguments are appended after them. If this is undesired, putting a
question mark at the end of a replacement string avoids having them appended,
for example:

rewrite ^/users/(.*)$ /show?user=$1? last;

If a regular expression includes the “}” or “;” characters, the whole
expressions should be enclosed in single or double quotes.

Nginx, Inc. p.182 of 379

CHAPTER 2. HTTP SERVER MODULES 2.35. MODULE NGX HTTP REWRITE MODULE

rewrite log

Syntax: rewrite_log on | off;

Default off

Context: http, server, location, if

Enables or disables logging of ngx_http_rewrite_module module
directives processing results into the error log at the notice level.

set

Syntax: set $variable value;

Default —

Context: server, location, if

Sets a value for the specified variable. The value can contain text, variables,
and their combination.

uninitialized variable warn

Syntax: uninitialized_variable_warn on | off;

Default on

Context: http, server, location, if

Controls whether warnings about uninitialized variables are logged.

2.35.3 Internal Implementation

The ngx_http_rewrite_module module directives are compiled at
the configuration stage into internal instructions that are interpreted during
request processing. An interpreter is a simple virtual stack machine.

For example, the directives

location /download/ {
if ($forbidden) {

return 403;
}

if ($slow) {
limit_rate 10k;

}

rewrite ^/(download/.*)/media/(.*)\..*$ /$1/mp3/$2.mp3 break;
}

will be translated into these instructions:

variable $forbidden
check against zero

return 403
end of code

variable $slow
check against zero
match of regular expression
copy "/"
copy $1

Nginx, Inc. p.183 of 379

CHAPTER 2. HTTP SERVER MODULES 2.35. MODULE NGX HTTP REWRITE MODULE

copy "/mp3/"
copy $2
copy ".mp3"
end of regular expression
end of code

Note that there are no instructions for the limit rate directive above as
it is unrelated to the ngx_http_rewrite_module module. A separate
configuration is created for the if block. If the condition holds true, a request
is assigned this configuration where limit_rate equals to 10k.

The directive

rewrite ^/(download/.*)/media/(.*)\..*$ /$1/mp3/$2.mp3 break;

can be made smaller by one instruction if the first slash in the regular
expression is put inside the parentheses:

rewrite ^(/download/.*)/media/(.*)\..*$ $1/mp3/$2.mp3 break;

The corresponding instructions will then look like this:

match of regular expression
copy $1
copy "/mp3/"
copy $2
copy ".mp3"
end of regular expression
end of code

Nginx, Inc. p.184 of 379

CHAPTER 2. HTTP SERVER MODULES 2.36. MODULE NGX HTTP SCGI MODULE

2.36 Module ngx http scgi module

2.36.1 Summary . 186
2.36.2 Example Configuration 186
2.36.3 Directives . 186

scgi bind . 186
scgi buffer size . 186
scgi buffering . 187
scgi buffers . 187
scgi busy buffers size . 187
scgi cache . 187
scgi cache bypass . 188
scgi cache key . 188
scgi cache lock . 188
scgi cache lock age . 188
scgi cache lock timeout 189
scgi cache methods . 189
scgi cache min uses . 189
scgi cache path . 189
scgi cache purge . 191
scgi cache revalidate . 192
scgi cache use stale . 192
scgi cache valid . 192
scgi connect timeout . 193
scgi force ranges . 193
scgi hide header . 193
scgi ignore client abort 194
scgi ignore headers . 194
scgi intercept errors . 194
scgi limit rate . 195
scgi max temp file size 195
scgi next upstream . 195
scgi next upstream timeout 196
scgi next upstream tries 196
scgi no cache . 197
scgi param . 197
scgi pass . 197
scgi pass header . 198
scgi pass request body 198
scgi pass request headers 198
scgi read timeout . 198
scgi request buffering . 198
scgi send timeout . 199
scgi store . 199
scgi store access . 200
scgi temp file write size 200

Nginx, Inc. p.185 of 379

CHAPTER 2. HTTP SERVER MODULES 2.36. MODULE NGX HTTP SCGI MODULE

scgi temp path . 200

2.36.1 Summary

The ngx_http_scgi_module module allows passing requests to an
SCGI server.

2.36.2 Example Configuration

location / {
include scgi_params;
scgi_pass localhost:9000;

}

2.36.3 Directives

scgi bind

Syntax: scgi_bind address [transparent] | off;

Default —

Context: http, server, location

Makes outgoing connections to an SCGI server originate from the specified
local IP address with an optional port (1.11.2). Parameter value can contain
variables (1.3.12). The special value off (1.3.12) cancels the effect of the
scgi_bind directive inherited from the previous configuration level, which
allows the system to auto-assign the local IP address and port.

The transparent parameter (1.11.0) allows outgoing connections to an
SCGI server originate from a non-local IP address, for example, from a real IP
address of a client:

scgi_bind $remote_addr transparent;

In order for this parameter to work, it is necessary to run nginx worker
processes with the superuser privileges and configure kernel routing table to
intercept network traffic from the SCGI server.

scgi buffer size

Syntax: scgi_buffer_size size;

Default 4k|8k

Context: http, server, location

Sets the size of the buffer used for reading the first part of the response
received from the SCGI server. This part usually contains a small response
header. By default, the buffer size is equal to one memory page. This is either
4K or 8K, depending on a platform. It can be made smaller, however.

Nginx, Inc. p.186 of 379

CHAPTER 2. HTTP SERVER MODULES 2.36. MODULE NGX HTTP SCGI MODULE

scgi buffering

Syntax: scgi_buffering on | off;

Default on

Context: http, server, location

Enables or disables buffering of responses from the SCGI server.
When buffering is enabled, nginx receives a response from the SCGI server

as soon as possible, saving it into the buffers set by the scgi buffer size and
scgi buffers directives. If the whole response does not fit into memory, a part
of it can be saved to a temporary file on the disk. Writing to temporary
files is controlled by the scgi max temp file size and scgi temp file write size
directives.

When buffering is disabled, the response is passed to a client synchronously,
immediately as it is received. nginx will not try to read the whole response
from the SCGI server. The maximum size of the data that nginx can receive
from the server at a time is set by the scgi buffer size directive.

Buffering can also be enabled or disabled by passing “yes” or “no” in the
X-Accel-Buffering response header field. This capability can be disabled
using the scgi ignore headers directive.

scgi buffers

Syntax: scgi_buffers number size;

Default 8 4k|8k

Context: http, server, location

Sets the number and size of the buffers used for reading a response from
the SCGI server, for a single connection. By default, the buffer size is equal to
one memory page. This is either 4K or 8K, depending on a platform.

scgi busy buffers size

Syntax: scgi_busy_buffers_size size;

Default 8k|16k

Context: http, server, location

When buffering of responses from the SCGI server is enabled, limits the
total size of buffers that can be busy sending a response to the client while the
response is not yet fully read. In the meantime, the rest of the buffers can be
used for reading the response and, if needed, buffering part of the response to
a temporary file. By default, size is limited by the size of two buffers set by
the scgi buffer size and scgi buffers directives.

scgi cache

Syntax: scgi_cache zone | off;

Default off

Context: http, server, location

Nginx, Inc. p.187 of 379

CHAPTER 2. HTTP SERVER MODULES 2.36. MODULE NGX HTTP SCGI MODULE

Defines a shared memory zone used for caching. The same zone can be
used in several places. Parameter value can contain variables (1.7.9). The off
parameter disables caching inherited from the previous configuration level.

scgi cache bypass

Syntax: scgi_cache_bypass string . . . ;

Default —

Context: http, server, location

Defines conditions under which the response will not be taken from a cache.
If at least one value of the string parameters is not empty and is not equal to
“0” then the response will not be taken from the cache:

scgi_cache_bypass $cookie_nocache $arg_nocache$arg_comment;
scgi_cache_bypass $http_pragma $http_authorization;

Can be used along with the scgi no cache directive.

scgi cache key

Syntax: scgi_cache_key string;

Default —

Context: http, server, location

Defines a key for caching, for example

scgi_cache_key localhost:9000$request_uri;

scgi cache lock

Syntax: scgi_cache_lock on | off;

Default off

Context: http, server, location
This directive appeared in version 1.1.12.

When enabled, only one request at a time will be allowed to populate a new
cache element identified according to the scgi cache key directive by passing a
request to an SCGI server. Other requests of the same cache element will either
wait for a response to appear in the cache or the cache lock for this element
to be released, up to the time set by the scgi cache lock timeout directive.

scgi cache lock age

Syntax: scgi_cache_lock_age time;

Default 5s

Context: http, server, location
This directive appeared in version 1.7.8.

Nginx, Inc. p.188 of 379

CHAPTER 2. HTTP SERVER MODULES 2.36. MODULE NGX HTTP SCGI MODULE

If the last request passed to the SCGI server for populating a new cache
element has not completed for the specified time, one more request may be
passed to the SCGI server.

scgi cache lock timeout

Syntax: scgi_cache_lock_timeout time;

Default 5s

Context: http, server, location
This directive appeared in version 1.1.12.

Sets a timeout for scgi cache lock. When the time expires, the request will
be passed to the SCGI server, however, the response will not be cached.

Before 1.7.8, the response could be cached.

scgi cache methods

Syntax: scgi_cache_methods GET | HEAD | POST . . . ;

Default GET HEAD

Context: http, server, location

If the client request method is listed in this directive then the response will
be cached. “GET” and “HEAD” methods are always added to the list, though it
is recommended to specify them explicitly. See also the scgi no cache directive.

scgi cache min uses

Syntax: scgi_cache_min_uses number;

Default 1

Context: http, server, location

Sets the number of requests after which the response will be cached.

scgi cache path

Syntax: scgi_cache_path path [levels=levels] [use_temp_path=on|off]

keys_zone=name:size [inactive=time] [max_size=size]

[manager_files=number] [manager_sleep=time]

[manager_threshold=time] [loader_files=number]

[loader_sleep=time] [loader_threshold=time]

[purger=on|off] [purger_files=number] [purger_sleep=time]

[purger_threshold=time];

Default —

Context: http

Sets the path and other parameters of a cache. Cache data are stored in
files. The file name in a cache is a result of applying the MD5 function to
the cache key. The levels parameter defines hierarchy levels of a cache:

Nginx, Inc. p.189 of 379

CHAPTER 2. HTTP SERVER MODULES 2.36. MODULE NGX HTTP SCGI MODULE

from 1 to 3, each level accepts values 1 or 2. For example, in the following
configuration

scgi_cache_path /data/nginx/cache levels=1:2 keys_zone=one:10m;

file names in a cache will look like this:

/data/nginx/cache/c/29/b7f54b2df7773722d382f4809d65029c

A cached response is first written to a temporary file, and then the file is
renamed. Starting from version 0.8.9, temporary files and the cache can be put
on different file systems. However, be aware that in this case a file is copied
across two file systems instead of the cheap renaming operation. It is thus
recommended that for any given location both cache and a directory holding
temporary files are put on the same file system. A directory for temporary files
is set based on the use_temp_path parameter (1.7.10). If this parameter is
omitted or set to the value on, the directory set by the scgi temp path directive
for the given location will be used. If the value is set to off, temporary files
will be put directly in the cache directory.

In addition, all active keys and information about data are stored in a
shared memory zone, whose name and size are configured by the keys_zone
parameter. One megabyte zone can store about 8 thousand keys.

Cached data that are not accessed during the time specified by the
inactive parameter get removed from the cache regardless of their freshness.
By default, inactive is set to 10 minutes.

The special “cache manager” process monitors the maximum cache
size set by the max_size parameter. When this size is exceeded,
it removes the least recently used data. The data is removed in
iterations configured by manager_files, manager_threshold, and
manager_sleep parameters (1.11.5). During one iteration no more than
manager_files items are deleted (by default, 100). The duration of one
iteration is limited by the manager_threshold parameter (by default, 200
milliseconds). Between iterations, a pause configured by the manager_sleep
parameter (by default, 50 milliseconds) is made.

A minute after the start the special “cache loader” process is activated. It
loads information about previously cached data stored on file system into a
cache zone. The loading is also done in iterations. During one iteration no
more than loader_files items are loaded (by default, 100). Besides, the
duration of one iteration is limited by the loader_threshold parameter
(by default, 200 milliseconds). Between iterations, a pause configured by the
loader_sleep parameter (by default, 50 milliseconds) is made.

Additionally, the following parameters are available as part of our
commercial subscription:

purger=on|off
Instructs whether cache entries that match a wildcard key will be
removed from the disk by the cache purger (1.7.12). Setting the

Nginx, Inc. p.190 of 379

http://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.36. MODULE NGX HTTP SCGI MODULE

parameter to on (default is off) will activate the “cache purger” process
that permanently iterates through all cache entries and deletes the entries
that match the wildcard key.

purger_files=number
Sets the number of items that will be scanned during one iteration
(1.7.12). By default, purger_files is set to 10.

purger_threshold=number
Sets the duration of one iteration (1.7.12). By default,
purger_threshold is set to 50 milliseconds.

purger_sleep=number
Sets a pause between iterations (1.7.12). By default, purger_sleep is
set to 50 milliseconds.

scgi cache purge

Syntax: scgi_cache_purgestring . . . ;

Default —

Context: http, server, location
This directive appeared in version 1.5.7.

Defines conditions under which the request will be considered a cache purge
request. If at least one value of the string parameters is not empty and
is not equal to “0” then the cache entry with a corresponding cache key is
removed. The result of successful operation is indicated by returning the 204
No Content response.

If the cache key of a purge request ends with an asterisk (“*”), all cache
entries matching the wildcard key will be removed from the cache. However,
these entries will remain on the disk until they are deleted for either inactivity,
or processed by the cache purger (1.7.12), or a client attempts to access them.

Example configuration:

scgi_cache_path /data/nginx/cache keys_zone=cache_zone:10m;

map $request_method $purge_method {
PURGE 1;
default 0;

}

server {
...
location / {

scgi_pass backend;
scgi_cache cache_zone;
scgi_cache_key $uri;
scgi_cache_purge $purge_method;

}
}

This functionality is available as part of our commercial subscription.

Nginx, Inc. p.191 of 379

http://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.36. MODULE NGX HTTP SCGI MODULE

scgi cache revalidate

Syntax: scgi_cache_revalidate on | off;

Default off

Context: http, server, location
This directive appeared in version 1.5.7.

Enables revalidation of expired cache items using conditional requests with
the If-Modified-Since and If-None-Match header fields.

scgi cache use stale

Syntax: scgi_cache_use_stale error | timeout | invalid_header |
updating | http_500 | http_503 | http_403 | http_404 | off
. . . ;

Default off

Context: http, server, location

Determines in which cases a stale cached response can be used when an
error occurs during communication with the SCGI server. The directive’s
parameters match the parameters of the scgi next upstream directive.

The error parameter also permits using a stale cached response if an
SCGI server to process a request cannot be selected.

Additionally, the updating parameter permits using a stale cached
response if it is currently being updated. This allows minimizing the number
of accesses to SCGI servers when updating cached data.

To minimize the number of accesses to SCGI servers when populating a
new cache element, the scgi cache lock directive can be used.

scgi cache valid

Syntax: scgi_cache_valid [code . . .] time;

Default —

Context: http, server, location

Sets caching time for different response codes. For example, the following
directives

scgi_cache_valid 200 302 10m;
scgi_cache_valid 404 1m;

set 10 minutes of caching for responses with codes 200 and 302 and 1 minute
for responses with code 404.

If only caching time is specified

scgi_cache_valid 5m;

then only 200, 301, and 302 responses are cached.
In addition, the any parameter can be specified to cache any responses:

Nginx, Inc. p.192 of 379

CHAPTER 2. HTTP SERVER MODULES 2.36. MODULE NGX HTTP SCGI MODULE

scgi_cache_valid 200 302 10m;
scgi_cache_valid 301 1h;
scgi_cache_valid any 1m;

Parameters of caching can also be set directly in the response header. This
has higher priority than setting of caching time using the directive.

• The X-Accel-Expires header field sets caching time of a response in
seconds. The zero value disables caching for a response. If the value
starts with the @ prefix, it sets an absolute time in seconds since Epoch,
up to which the response may be cached.

• If the header does not include the X-Accel-Expires field, parameters
of caching may be set in the header fields Expires or Cache-Control.

• If the header includes the Set-Cookie field, such a response will not
be cached.

• If the header includes the Vary field with the special value “*”, such a
response will not be cached (1.7.7). If the header includes the Vary field
with another value, such a response will be cached taking into account
the corresponding request header fields (1.7.7).

Processing of one or more of these response header fields can be disabled using
the scgi ignore headers directive.

scgi connect timeout

Syntax: scgi_connect_timeout time;

Default 60s

Context: http, server, location

Defines a timeout for establishing a connection with an SCGI server. It
should be noted that this timeout cannot usually exceed 75 seconds.

scgi force ranges

Syntax: scgi_force_ranges on | off;

Default off

Context: http, server, location
This directive appeared in version 1.7.7.

Enables byte-range support for both cached and uncached responses from
the SCGI server regardless of the Accept-Ranges field in these responses.

scgi hide header

Syntax: scgi_hide_header field;

Default —

Context: http, server, location

Nginx, Inc. p.193 of 379

CHAPTER 2. HTTP SERVER MODULES 2.36. MODULE NGX HTTP SCGI MODULE

By default, nginx does not pass the header fields Status and
X-Accel-... from the response of an SCGI server to a client. The
scgi_hide_header directive sets additional fields that will not be passed.
If, on the contrary, the passing of fields needs to be permitted, the scgi pass -
header directive can be used.

scgi ignore client abort

Syntax: scgi_ignore_client_abort on | off;

Default off

Context: http, server, location

Determines whether the connection with an SCGI server should be closed
when a client closes the connection without waiting for a response.

scgi ignore headers

Syntax: scgi_ignore_headers field . . . ;

Default —

Context: http, server, location

Disables processing of certain response header fields from
the SCGI server. The following fields can be ignored:
X-Accel-Redirect, X-Accel-Expires, X-Accel-Limit-Rate
(1.1.6), X-Accel-Buffering (1.1.6), X-Accel-Charset (1.1.6),
Expires, Cache-Control, Set-Cookie (0.8.44), and Vary (1.7.7).

If not disabled, processing of these header fields has the following effect:

• X-Accel-Expires, Expires, Cache-Control, Set-Cookie, and
Vary set the parameters of response caching;

• X-Accel-Redirect performs an internal redirect to the specified URI;

• X-Accel-Limit-Rate sets the rate limit for transmission of a
response to a client;

• X-Accel-Buffering enables or disables buffering of a response;

• X-Accel-Charset sets the desired charset of a response.

scgi intercept errors

Syntax: scgi_intercept_errors on | off;

Default off

Context: http, server, location

Determines whether an SCGI server responses with codes greater than or
equal to 300 should be passed to a client or be intercepted and redirected to
nginx for processing with the error page directive.

Nginx, Inc. p.194 of 379

CHAPTER 2. HTTP SERVER MODULES 2.36. MODULE NGX HTTP SCGI MODULE

scgi limit rate

Syntax: scgi_limit_rate rate;

Default 0

Context: http, server, location
This directive appeared in version 1.7.7.

Limits the speed of reading the response from the SCGI server. The rate is
specified in bytes per second. The zero value disables rate limiting. The limit
is set per a request, and so if nginx simultaneously opens two connections to
the SCGI server, the overall rate will be twice as much as the specified limit.
The limitation works only if buffering of responses from the SCGI server is
enabled.

scgi max temp file size

Syntax: scgi_max_temp_file_size size;

Default 1024m

Context: http, server, location

When buffering of responses from the SCGI server is enabled, and the
whole response does not fit into the buffers set by the scgi buffer size and
scgi buffers directives, a part of the response can be saved to a temporary file.
This directive sets the maximum size of the temporary file. The size of data
written to the temporary file at a time is set by the scgi temp file write size
directive.

The zero value disables buffering of responses to temporary files.

This restriction does not apply to responses that will be cached or stored
on disk.

scgi next upstream

Syntax: scgi_next_upstream error | timeout | invalid_header |
http_500 | http_503 | http_403 | http_404 | non_idempotent |
off . . . ;

Default error timeout

Context: http, server, location

Specifies in which cases a request should be passed to the next server:

error
an error occurred while establishing a connection with the server, passing
a request to it, or reading the response header;

timeout
a timeout has occurred while establishing a connection with the server,
passing a request to it, or reading the response header;

invalid_header
a server returned an empty or invalid response;

Nginx, Inc. p.195 of 379

CHAPTER 2. HTTP SERVER MODULES 2.36. MODULE NGX HTTP SCGI MODULE

http_500
a server returned a response with the code 500;

http_503
a server returned a response with the code 503;

http_403
a server returned a response with the code 403;

http_404
a server returned a response with the code 404;

non_idempotent
normally, requests with a non-idempotent method (POST, LOCK, PATCH)
are not passed to the next server if a request has been sent to an
upstream server (1.9.13); enabling this option explicitly allows retrying
such requests;

off
disables passing a request to the next server.

One should bear in mind that passing a request to the next server is only
possible if nothing has been sent to a client yet. That is, if an error or timeout
occurs in the middle of the transferring of a response, fixing this is impossible.

The directive also defines what is considered an unsuccessful attempt
of communication with a server. The cases of error, timeout and
invalid_header are always considered unsuccessful attempts, even if they
are not specified in the directive. The cases of http_500 and http_503
are considered unsuccessful attempts only if they are specified in the directive.
The cases of http_403 and http_404 are never considered unsuccessful
attempts.

Passing a request to the next server can be limited by the number of tries
and by time.

scgi next upstream timeout

Syntax: scgi_next_upstream_timeout time;

Default 0

Context: http, server, location
This directive appeared in version 1.7.5.

Limits the time during which a request can be passed to the next server.
The 0 value turns off this limitation.

scgi next upstream tries

Syntax: scgi_next_upstream_tries number;

Default 0

Context: http, server, location
This directive appeared in version 1.7.5.

Limits the number of possible tries for passing a request to the next server.
The 0 value turns off this limitation.

Nginx, Inc. p.196 of 379

http://tools.ietf.org/html/rfc7231#section-4.2.2

CHAPTER 2. HTTP SERVER MODULES 2.36. MODULE NGX HTTP SCGI MODULE

scgi no cache

Syntax: scgi_no_cache string . . . ;

Default —

Context: http, server, location

Defines conditions under which the response will not be saved to a cache.
If at least one value of the string parameters is not empty and is not equal to
“0” then the response will not be saved:

scgi_no_cache $cookie_nocache $arg_nocache$arg_comment;
scgi_no_cache $http_pragma $http_authorization;

Can be used along with the scgi cache bypass directive.

scgi param

Syntax: scgi_param parameter value [if_not_empty];

Default —

Context: http, server, location

Sets a parameter that should be passed to the SCGI server. The value can
contain text, variables, and their combination. These directives are inherited
from the previous level if and only if there are no scgi_param directives
defined on the current level.

Standard CGI environment variables should be provided as SCGI headers,
see the scgi_params file provided in the distribution:

location / {
include scgi_params;
...

}

If the directive is specified with if_not_empty (1.1.11) then such a
parameter will not be passed to the server until its value is not empty:

scgi_param HTTPS $https if_not_empty;

scgi pass

Syntax: scgi_pass address;

Default —

Context: location, if in location

Sets the address of an SCGI server. The address can be specified as a
domain name or IP address, and a port:

scgi_pass localhost:9000;

or as a UNIX-domain socket path:

Nginx, Inc. p.197 of 379

http://tools.ietf.org/html/rfc3875#section-4.1

CHAPTER 2. HTTP SERVER MODULES 2.36. MODULE NGX HTTP SCGI MODULE

scgi_pass unix:/tmp/scgi.socket;

If a domain name resolves to several addresses, all of them will be used
in a round-robin fashion. In addition, an address can be specified as a server
group.

scgi pass header

Syntax: scgi_pass_header field;

Default —

Context: http, server, location

Permits passing otherwise disabled header fields from an SCGI server to a
client.

scgi pass request body

Syntax: scgi_pass_request_body on | off;

Default on

Context: http, server, location

Indicates whether the original request body is passed to the SCGI server.
See also the scgi pass request headers directive.

scgi pass request headers

Syntax: scgi_pass_request_headers on | off;

Default on

Context: http, server, location

Indicates whether the header fields of the original request are passed to the
SCGI server. See also the scgi pass request body directive.

scgi read timeout

Syntax: scgi_read_timeout time;

Default 60s

Context: http, server, location

Defines a timeout for reading a response from the SCGI server. The timeout
is set only between two successive read operations, not for the transmission of
the whole response. If the SCGI server does not transmit anything within this
time, the connection is closed.

scgi request buffering

Syntax: scgi_request_buffering on | off;

Default on

Context: http, server, location

Nginx, Inc. p.198 of 379

CHAPTER 2. HTTP SERVER MODULES 2.36. MODULE NGX HTTP SCGI MODULE

This directive appeared in version 1.7.11.

Enables or disables buffering of a client request body.
When buffering is enabled, the entire request body is read from the client

before sending the request to an SCGI server.
When buffering is disabled, the request body is sent to the SCGI server

immediately as it is received. In this case, the request cannot be passed to the
next server if nginx already started sending the request body.

When HTTP/1.1 chunked transfer encoding is used to send the original
request body, the request body will be buffered regardless of the directive
value.

scgi send timeout

Syntax: scgi_send_timeout time;

Default 60s

Context: http, server, location

Sets a timeout for transmitting a request to the SCGI server. The timeout
is set only between two successive write operations, not for the transmission
of the whole request. If the SCGI server does not receive anything within this
time, the connection is closed.

scgi store

Syntax: scgi_store on | off | string;

Default off

Context: http, server, location

Enables saving of files to a disk. The on parameter saves files with paths
corresponding to the directives alias or root. The off parameter disables
saving of files. In addition, the file name can be set explicitly using the string
with variables:

scgi_store /data/www$original_uri;

The modification time of files is set according to the received
Last-Modified response header field. The response is first written to a
temporary file, and then the file is renamed. Starting from version 0.8.9,
temporary files and the persistent store can be put on different file systems.
However, be aware that in this case a file is copied across two file systems
instead of the cheap renaming operation. It is thus recommended that for any
given location both saved files and a directory holding temporary files, set by
the scgi temp path directive, are put on the same file system.

This directive can be used to create local copies of static unchangeable files,
e.g.:

location /images/ {
root /data/www;
error_page 404 = /fetch$uri;

Nginx, Inc. p.199 of 379

CHAPTER 2. HTTP SERVER MODULES 2.36. MODULE NGX HTTP SCGI MODULE

}

location /fetch/ {
internal;

scgi_pass backend:9000;
...

scgi_store on;
scgi_store_access user:rw group:rw all:r;
scgi_temp_path /data/temp;

alias /data/www/;
}

scgi store access

Syntax: scgi_store_access users:permissions . . . ;

Default user:rw

Context: http, server, location

Sets access permissions for newly created files and directories, e.g.:

scgi_store_access user:rw group:rw all:r;

If any group or all access permissions are specified then user
permissions may be omitted:

scgi_store_access group:rw all:r;

scgi temp file write size

Syntax: scgi_temp_file_write_size size;

Default 8k|16k

Context: http, server, location

Limits the size of data written to a temporary file at a time, when buffering
of responses from the SCGI server to temporary files is enabled. By default, size
is limited by two buffers set by the scgi buffer size and scgi buffers directives.
The maximum size of a temporary file is set by the scgi max temp file size
directive.

scgi temp path

Syntax: scgi_temp_path path [level1 [level2 [level3]]];

Default scgi_temp

Context: http, server, location

Defines a directory for storing temporary files with data received from SCGI
servers. Up to three-level subdirectory hierarchy can be used underneath the
specified directory. For example, in the following configuration

Nginx, Inc. p.200 of 379

CHAPTER 2. HTTP SERVER MODULES 2.36. MODULE NGX HTTP SCGI MODULE

scgi_temp_path /spool/nginx/scgi_temp 1 2;

a temporary file might look like this:

/spool/nginx/scgi_temp/7/45/00000123457

See also the use_temp_path parameter of the scgi cache path directive.

Nginx, Inc. p.201 of 379

CHAPTER 2. HTTP SERVER MODULES 2.37. MODULE NGX HTTP SECURE LINK MODULE

2.37 Module ngx http secure link module

2.37.1 Summary . 202
2.37.2 Directives . 202

secure link . 202
secure link md5 . 203
secure link secret . 203

2.37.3 Embedded Variables . 204

2.37.1 Summary

The ngx_http_secure_link_module module (0.7.18) is used to check
authenticity of requested links, protect resources from unauthorized access, and
limit link lifetime.

The authenticity of a requested link is verified by comparing the checksum
value passed in a request with the value computed for the request. If a link has
a limited lifetime and the time has expired, the link is considered outdated.
The status of these checks is made available in the $secure link variable.

The module provides two alternative operation modes. The first mode is
enabled by the secure link secret directive and is used to check authenticity
of requested links as well as protect resources from unauthorized access.
The second mode (0.8.50) is enabled by the secure link and secure link md5
directives and is also used to limit lifetime of links.

This module is not built by default, it should be enabled with the
--with-http_secure_link_module configuration parameter.

2.37.2 Directives

secure link

Syntax: secure_link expression;

Default —

Context: http, server, location

Defines a string with variables from which the checksum value and lifetime
of a link will be extracted.

Variables used in an expression are usually associated with a request; see
example below.

The checksum value extracted from the string is compared with the MD5
hash value of the expression defined by the secure link md5 directive. If the
checksums are different, the $secure link variable is set to an empty string.
If the checksums are the same, the link lifetime is checked. If the link has a
limited lifetime and the time has expired, the $secure link variable is set to
“0”. Otherwise, it is set to “1”. The MD5 hash value passed in a request is
encoded in base64url.

If a link has a limited lifetime, the expiration time is set in seconds
since Epoch (Thu, 01 Jan 1970 00:00:00 GMT). The value is specified in the
expression after the MD5 hash, and is separated by a comma. The expiration

Nginx, Inc. p.202 of 379

http://tools.ietf.org/html/rfc4648#section-5

CHAPTER 2. HTTP SERVER MODULES 2.37. MODULE NGX HTTP SECURE LINK MODULE

time passed in a request is available through the $secure link expires variable
for a use in the secure link md5 directive. If the expiration time is not specified,
a link has the unlimited lifetime.

secure link md5

Syntax: secure_link_md5 expression;

Default —

Context: http, server, location

Defines an expression for which the MD5 hash value will be computed and
compared with the value passed in a request.

The expression should contain the secured part of a link (resource) and a
secret ingredient. If the link has a limited lifetime, the expression should also
contain $secure link expires.

To prevent unauthorized access, the expression may contain some
information about the client, such as its address and browser version.

Example:

location /s/ {
secure_link $arg_md5,$arg_expires;
secure_link_md5 "$secure_link_expires$uri$remote_addr secret";

if ($secure_link = "") {
return 403;

}

if ($secure_link = "0") {
return 410;

}

...
}

The“/s/link?md5=_e4Nc3iduzkWRm01TBBNYw&expires=2147483647”
link restricts access to “/s/link” for the client with the IP address 127.0.0.1.
The link also has the limited lifetime until January 19, 2038 (GMT).

On UNIX, the md5 request argument value can be obtained as:

echo -n ’2147483647/s/link127.0.0.1 secret’ | \
openssl md5 -binary | openssl base64 | tr +/ -_ | tr -d =

secure link secret

Syntax: secure_link_secret word;

Default —

Context: location

Defines a secret word used to check authenticity of requested links.
The full URI of a requested link looks as follows:

/prefix/hash/link

Nginx, Inc. p.203 of 379

CHAPTER 2. HTTP SERVER MODULES 2.37. MODULE NGX HTTP SECURE LINK MODULE

where hash is a hexadecimal representation of the MD5 hash computed for
the concatenation of the link and secret word, and prefix is an arbitrary string
without slashes.

If the requested link passes the authenticity check, the $secure link variable
is set to the link extracted from the request URI. Otherwise, the $secure link
variable is set to an empty string.

Example:

location /p/ {
secure_link_secret secret;

if ($secure_link = "") {
return 403;

}

rewrite ^ /secure/$secure_link;
}

location /secure/ {
internal;

}

A request of“/p/5e814704a28d9bc1914ff19fa0c4a00a/link”will
be internally redirected to “/secure/link”.

On UNIX, the hash value for this example can be obtained as:

echo -n ’linksecret’ | openssl md5 -hex

2.37.3 Embedded Variables

$secure link
The status of a link check. The specific value depends on the selected
operation mode.

$secure link expires
The lifetime of a link passed in a request; intended to be used only in
the secure link md5 directive.

Nginx, Inc. p.204 of 379

CHAPTER 2. HTTP SERVER MODULES 2.38. MODULE NGX HTTP SESSION LOG MODULE

2.38 Module ngx http session log module

2.38.1 Summary . 205
2.38.2 Example Configuration 205
2.38.3 Directives . 205

session log format . 205
session log zone . 205
session log . 206

2.38.4 Embedded Variables . 206

2.38.1 Summary

The ngx_http_session_log_module module enables logging sessions
(that is, aggregates of multiple HTTP requests) instead of individual HTTP
requests.

This module is available as part of our commercial subscription.

2.38.2 Example Configuration

The following configuration sets up a session log and maps requests to
sessions according to the request client address and User-Agent request
header field:

session_log_zone /path/to/log format=combined
zone=one:1m timeout=30s
md5=$binary_remote_addr$http_user_agent;

location /media/ {
session_log one;

}

2.38.3 Directives

session log format

Syntax: session_log_format name string . . . ;

Default combined "..."

Context: http

Specifies the output format of a log. The value of the $body bytes sent
variable is aggregated across all requests in a session. The values of all other
variables available for logging correspond to the first request in a session.

session log zone

Syntax: session_log_zone path zone=name:size [format=format]

[timeout=time] [id=id] [md5=md5] ;

Default —

Context: http

Nginx, Inc. p.205 of 379

http://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.38. MODULE NGX HTTP SESSION LOG MODULE

Sets the path to a log file and configures the shared memory zone that is
used to store currently active sessions.

A session is considered active for as long as the time elapsed since the last
request in the session does not exceed the specified timeout (by default, 30
seconds). Once a session is no longer active, it is written to the log.

The id parameter identifies the session to which a request is mapped. The
id parameter is set to the hexadecimal representation of an MD5 hash (for
example, obtained from a cookie using variables). If this parameter is not
specified or does not represent the valid MD5 hash, nginx computes the MD5
hash from the value of the md5 parameter and creates a new session using this
hash. Both the id and md5 parameters can contain variables.

The format parameter sets the custom session log format configured by
the session log format directive. If format is not specified, the predefined
“combined” format is used.

session log

Syntax: session_log name | off;

Default off

Context: http, server, location

Enables the use of the specified session log. The special value off cancels
all session_log directives inherited from the previous configuration level.

2.38.4 Embedded Variables

The ngx_http_session_log_module module supports two embedded
variables:

$session log id
current session ID;

$session log binary id
current session ID in binary form (16 bytes).

Nginx, Inc. p.206 of 379

CHAPTER 2. HTTP SERVER MODULES 2.39. MODULE NGX HTTP SLICE MODULE

2.39 Module ngx http slice module

2.39.1 Summary . 207
2.39.2 Example Configuration 207
2.39.3 Directives . 207

slice . 207
2.39.4 Embedded Variables . 207

2.39.1 Summary

The ngx_http_slice_module module (1.9.8) is a filter that splits a
request into subrequests, each returning a certain range of response. The filter
provides more effective caching of big responses.

This module is not built by default, it should be enabled with the
--with-http_slice_module configuration parameter.

2.39.2 Example Configuration

location / {
slice 1m;
proxy_cache cache;
proxy_cache_key uriis_args$args$slice_range;
proxy_set_header Range $slice_range;
proxy_cache_valid 200 206 1h;
proxy_pass http://localhost:8000;

}

In this example, the response is split into 1-megabyte cacheable slices.

2.39.3 Directives

slice

Syntax: slice size;

Default 0

Context: http, server, location

Sets the size of the slice. The zero value disables splitting responses into
slices. Note that a too low value may result in excessive memory usage and
opening a large number of files.

In order for a subrequest to return the required range, the $slice range
variable should be passed to the proxied server as the Range request header
field. If caching is enabled, $slice range should be added to the cache key and
caching of responses with 206 status code should be enabled.

2.39.4 Embedded Variables

The ngx_http_slice_module module supports the following embed-
ded variables:

Nginx, Inc. p.207 of 379

CHAPTER 2. HTTP SERVER MODULES 2.39. MODULE NGX HTTP SLICE MODULE

$slice range
the current slice range in HTTP byte range format, for example,
bytes=0-1048575.

Nginx, Inc. p.208 of 379

https://tools.ietf.org/html/rfc7233#section-2.1

CHAPTER 2. HTTP SERVER MODULES 2.40. MODULE NGX HTTP SPLIT CLIENTS MODULE

2.40 Module ngx http split clients module

2.40.1 Summary . 209
2.40.2 Example Configuration 209
2.40.3 Directives . 209

split clients . 209

2.40.1 Summary

The ngx_http_split_clients_module module creates variables
suitable for A/B testing, also known as split testing.

2.40.2 Example Configuration

http {
split_clients "${remote_addr}AAA" $variant {

0.5% .one;
2.0% .two;

* "";
}

server {
location / {

index index${variant}.html;

2.40.3 Directives

split clients

Syntax: split_clients string $variable { . . . }
Default —

Context: http

Creates a variable for A/B testing, for example:

split_clients "${remote_addr}AAA" $variant {
0.5% .one;
2.0% .two;

* "";
}

The value of the original string is hashed using MurmurHash2. In the
example given, hash values from 0 to 21474835 (0.5%) correspond to the value
".one" of the $variant variable, hash values from 21474836 to 107374180
(2%) correspond to the value ".two", and hash values from 107374181 to
4294967295 correspond to the value "" (an empty string).

Nginx, Inc. p.209 of 379

CHAPTER 2. HTTP SERVER MODULES 2.41. MODULE NGX HTTP SSI MODULE

2.41 Module ngx http ssi module

2.41.1 Summary . 210
2.41.2 Example Configuration 210
2.41.3 Directives . 210

ssi . 210
ssi last modified . 210
ssi min file chunk . 211
ssi silent errors . 211
ssi types . 211
ssi value length . 211

2.41.4 SSI Commands . 211
2.41.5 Embedded Variables . 214

2.41.1 Summary

The ngx_http_ssi_module module is a filter that processes SSI (Server
Side Includes) commands in responses passing through it. Currently, the list
of supported SSI commands is incomplete.

2.41.2 Example Configuration

location / {
ssi on;
...

}

2.41.3 Directives

ssi

Syntax: ssi on | off;

Default off

Context: http, server, location, if in location

Enables or disables processing of SSI commands in responses.

ssi last modified

Syntax: ssi_last_modified on | off;

Default off

Context: http, server, location
This directive appeared in version 1.5.1.

Allows preserving the Last-Modified header field from the original
response during SSI processing to facilitate response caching.

By default, the header field is removed as contents of the response are
modified during processing and may contain dynamically generated elements
or parts that are changed independently of the original response.

Nginx, Inc. p.210 of 379

CHAPTER 2. HTTP SERVER MODULES 2.41. MODULE NGX HTTP SSI MODULE

ssi min file chunk

Syntax: ssi_min_file_chunk size;

Default 1k

Context: http, server, location

Sets the minimum size for parts of a response stored on disk, starting from
which it makes sense to send them using sendfile.

ssi silent errors

Syntax: ssi_silent_errors on | off;

Default off

Context: http, server, location

If enabled, suppresses the output of the
“[an error occurred while processing the directive]”
string if an error occurred during SSI processing.

ssi types

Syntax: ssi_types mime-type . . . ;

Default text/html

Context: http, server, location

Enables processing of SSI commands in responses with the specified MIME
types in addition to “text/html”. The special value “*” matches any MIME
type (0.8.29).

ssi value length

Syntax: ssi_value_length length;

Default 256

Context: http, server, location

Sets the maximum length of parameter values in SSI commands.

2.41.4 SSI Commands

SSI commands have the following generic format:

<!--# command parameter1=value1 parameter2=value2 ... -->

The following commands are supported:

block
Defines a block that can be used as a stub in the include command.
The block can contain other SSI commands. The command has the
following parameter:

name
block name.

Nginx, Inc. p.211 of 379

CHAPTER 2. HTTP SERVER MODULES 2.41. MODULE NGX HTTP SSI MODULE

Example:

<!--# block name="one" -->
stub
<!--# endblock -->

config
Sets some parameters used during SSI processing, namely:

errmsg
a string that is output if an error occurs during SSI processing. By
default, the following string is output:

[an error occurred while processing the directive]

timefmt
a format string passed to the strftime function used to output
date and time. By default, the following format is used:

"%A, %d-%b-%Y %H:%M:%S %Z"

The “%s” format is suitable to output time in seconds.

echo
Outputs the value of a variable. The command has the following
parameters:

var
the variable name.

encoding
the encoding method. Possible values include none, url, and
entity. By default, entity is used.

default
a non-standard parameter that sets a string to be output if a variable
is undefined. By default, “none” is output. The command

<!--# echo var="name" default="no" -->

replaces the following sequence of commands:

<!--# if expr="$name" --><!--# echo var="name" --><!--#
else -->no<!--# endif -->

if
Performs a conditional inclusion. The following commands are
supported:

<!--# if expr="..." -->
...
<!--# elif expr="..." -->
...

Nginx, Inc. p.212 of 379

CHAPTER 2. HTTP SERVER MODULES 2.41. MODULE NGX HTTP SSI MODULE

<!--# else -->
...
<!--# endif -->

Only one level of nesting is currently supported. The command has the
following parameter:

expr
expression. An expression can be:

• variable existence check:

<!--# if expr="$name" -->

• comparison of a variable with a text:

<!--# if expr="$name = text" -->
<!--# if expr="$name != text" -->

• comparison of a variable with a regular expression:

<!--# if expr="$name = /text/" -->
<!--# if expr="$name != /text/" -->

If a text contains variables, their values are substituted. A regular
expression can contain positional and named captures that can later
be used through variables, for example:

<!--# if expr="$name = /(.+)@(?P<domain>.+)/" -->
<!--# echo var="1" -->
<!--# echo var="domain" -->

<!--# endif -->

include
Includes the result of another request into a response. The command has
the following parameters:

file
specifies an included file, for example:

<!--# include file="footer.html" -->

virtual
specifies an included request, for example:

<!--# include virtual="/remote/body.php?argument=value" -->

Several requests specified on one page and processed by proxied
or FastCGI/uwsgi/SCGI servers run in parallel. If sequential
processing is desired, the wait parameter should be used.

Nginx, Inc. p.213 of 379

CHAPTER 2. HTTP SERVER MODULES 2.41. MODULE NGX HTTP SSI MODULE

stub
a non-standard parameter that names the block whose content will
be output if the included request results in an empty body or if an
error occurs during the request processing, for example:

<!--# block name="one" --> <!--# endblock -->
<!--# include virtual="/remote/body.php?argument=value" stub="one"

-->

The replacement block content is processed in the included request
context.

wait
a non-standard parameter that instructs to wait for a request to
fully complete before continuing with SSI processing, for example:

<!--# include virtual="/remote/body.php?argument=value" wait="yes"
-->

set
a non-standard parameter that instructs to write a successful result
of request processing to the specified variable, for example:

<!--# include virtual="/remote/body.php?argument=value" set="one"
-->

It should be noted that only the results of responses obtained using
the ngx http proxy module, ngx http memcached module, ngx -
http fastcgi module (1.5.6), ngx http uwsgi module (1.5.6), and
ngx http scgi module (1.5.6) modules can be written into variables.

set
Sets a value of a variable. The command has the following parameters:

var
the variable name.

value
the variable value. If an assigned value contains variables, their
values are substituted.

2.41.5 Embedded Variables

The ngx_http_ssi_module module supports two embedded variables:

$date local
current time in the local time zone. The format is set by the config
command with the timefmt parameter.

$date gmt
current time in GMT. The format is set by the config command with
the timefmt parameter.

Nginx, Inc. p.214 of 379

CHAPTER 2. HTTP SERVER MODULES 2.42. MODULE NGX HTTP SSL MODULE

2.42 Module ngx http ssl module

2.42.1 Summary . 215
2.42.2 Example Configuration 215
2.42.3 Directives . 216

ssl . 216
ssl buffer size . 216
ssl certificate . 217
ssl certificate key . 217
ssl ciphers . 218
ssl client certificate . 218
ssl crl . 218
ssl dhparam . 218
ssl ecdh curve . 219
ssl password file . 219
ssl prefer server ciphers 219
ssl protocols . 220
ssl session cache . 220
ssl session ticket key . 221
ssl session tickets . 221
ssl session timeout . 221
ssl stapling . 221
ssl stapling file . 222
ssl stapling responder 222
ssl stapling verify . 222
ssl trusted certificate . 222
ssl verify client . 223
ssl verify depth . 223

2.42.4 Error Processing . 223
2.42.5 Embedded Variables . 223

2.42.1 Summary

The ngx_http_ssl_module module provides the necessary support for
HTTPS.

This module is not built by default, it should be enabled with the
--with-http_ssl_module configuration parameter.

This module requires the OpenSSL library.

2.42.2 Example Configuration

To reduce the processor load it is recommended to

• set the number of worker processes equal to the number of processors,

Nginx, Inc. p.215 of 379

http://www.openssl.org

CHAPTER 2. HTTP SERVER MODULES 2.42. MODULE NGX HTTP SSL MODULE

• enable keep-alive connections,

• enable the shared session cache,

• disable the built-in session cache,

• and possibly increase the session lifetime (by default, 5 minutes):

worker_processes auto;

http {

...

server {
listen 443 ssl;
keepalive_timeout 70;

ssl_protocols TLSv1 TLSv1.1 TLSv1.2;
ssl_ciphers AES128-SHA:AES256-SHA:RC4-SHA:DES-CBC3-SHA:RC4-MD5;
ssl_certificate /usr/local/nginx/conf/cert.pem;
ssl_certificate_key /usr/local/nginx/conf/cert.key;
ssl_session_cache shared:SSL:10m;
ssl_session_timeout 10m;

...
}

2.42.3 Directives

ssl

Syntax: ssl on | off;

Default off

Context: http, server

Enables the HTTPS protocol for the given virtual server.

It is recommended to use the ssl parameter of the listen directive instead
of this directive.

ssl buffer size

Syntax: ssl_buffer_size size;

Default 16k

Context: http, server
This directive appeared in version 1.5.9.

Sets the size of the buffer used for sending data.
By default, the buffer size is 16k, which corresponds to minimal overhead

when sending big responses. To minimize Time To First Byte it may be
beneficial to use smaller values, for example:

ssl_buffer_size 4k;

Nginx, Inc. p.216 of 379

CHAPTER 2. HTTP SERVER MODULES 2.42. MODULE NGX HTTP SSL MODULE

ssl certificate

Syntax: ssl_certificate file;

Default —

Context: http, server

Specifies a file with the certificate in the PEM format for the given virtual
server. If intermediate certificates should be specified in addition to a primary
certificate, they should be specified in the same file in the following order: the
primary certificate comes first, then the intermediate certificates. A secret key
in the PEM format may be placed in the same file.

Since version 1.11.0, this directive can be specified multiple times to load
certificates of different types, for example, RSA and ECDSA:

server {
listen 443 ssl;
server_name example.com;

ssl_certificate example.com.rsa.crt;
ssl_certificate_key example.com.rsa.key;

ssl_certificate example.com.ecdsa.crt;
ssl_certificate_key example.com.ecdsa.key;

...
}

Only OpenSSL 1.0.2 or higher supports separate certificate chains for
different certificates. With older versions, only one certificate chain can be
used.

It should be kept in mind that due to the HTTPS protocol limitations
virtual servers should listen on different IP addresses:

server {
listen 192.168.1.1:443;
server_name one.example.com;
ssl_certificate one.example.com.crt;
...

}

server {
listen 192.168.1.2:443;
server_name two.example.com;
ssl_certificate two.example.com.crt;
...

}

otherwise the first server’s certificate will be issued for the second site.

ssl certificate key

Syntax: ssl_certificate_key file;

Default —

Context: http, server

Nginx, Inc. p.217 of 379

http://nginx.org/en/docs/http/configuring_https_servers.html#chains
http://nginx.org/en/docs/http/configuring_https_servers.html#name_based_https_servers

CHAPTER 2. HTTP SERVER MODULES 2.42. MODULE NGX HTTP SSL MODULE

Specifies a file with the secret key in the PEM format for the given virtual
server.

The value engine:name:id can be specified instead of the file (1.7.9), which
loads a secret key with a specified id from the OpenSSL engine name.

ssl ciphers

Syntax: ssl_ciphers ciphers;

Default HIGH:!aNULL:!MD5

Context: http, server

Specifies the enabled ciphers. The ciphers are specified in the format
understood by the OpenSSL library, for example:

ssl_ciphers ALL:!aNULL:!EXPORT56:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP;

The full list can be viewed using the “openssl ciphers” command.

The previous versions of nginx used different ciphers by default.

ssl client certificate

Syntax: ssl_client_certificate file;

Default —

Context: http, server

Specifies a file with trusted CA certificates in the PEM format used to
verify client certificates and OCSP responses if ssl stapling is enabled.

The list of certificates will be sent to clients. If this is not desired, the
ssl trusted certificate directive can be used.

ssl crl

Syntax: ssl_crl file;

Default —

Context: http, server
This directive appeared in version 0.8.7.

Specifies a file with revoked certificates (CRL) in the PEM format used to
verify client certificates.

ssl dhparam

Syntax: ssl_dhparam file;

Default —

Context: http, server
This directive appeared in version 0.7.2.

Specifies a file with DH parameters for DHE ciphers.

Nginx, Inc. p.218 of 379

http://nginx.org/en/docs/http/configuring_https_servers.html#compatibility

CHAPTER 2. HTTP SERVER MODULES 2.42. MODULE NGX HTTP SSL MODULE

ssl ecdh curve

Syntax: ssl_ecdh_curve curve;

Default auto

Context: http, server
This directive appeared in versions 1.1.0 and 1.0.6.

Specifies a curve for ECDHE ciphers.
When using OpenSSL 1.0.2 or higher, it is possible to specify multiple

curves (1.11.0), for example:

ssl_ecdh_curve prime256v1:secp384r1;

The special value auto (1.11.0) instructs nginx to use a list built into the
OpenSSL library when using OpenSSL 1.0.2 or higher, or prime256v1 with
older versions.

Prior to version 1.11.0, the prime256v1 curve was used by default.

ssl password file

Syntax: ssl_password_file file;

Default —

Context: http, server
This directive appeared in version 1.7.3.

Specifies a file with passphrases for secret keys where each passphrase is
specified on a separate line. Passphrases are tried in turn when loading the
key.

Example:

http {
ssl_password_file /etc/keys/global.pass;
...

server {
server_name www1.example.com;
ssl_certificate_key /etc/keys/first.key;

}

server {
server_name www2.example.com;

named pipe can also be used instead of a file
ssl_password_file /etc/keys/fifo;
ssl_certificate_key /etc/keys/second.key;

}
}

ssl prefer server ciphers

Syntax: ssl_prefer_server_ciphers on | off;

Default off

Context: http, server

Nginx, Inc. p.219 of 379

CHAPTER 2. HTTP SERVER MODULES 2.42. MODULE NGX HTTP SSL MODULE

Specifies that server ciphers should be preferred over client ciphers when
using the SSLv3 and TLS protocols.

ssl protocols

Syntax: ssl_protocols [SSLv2] [SSLv3] [TLSv1] [TLSv1.1] [TLSv1.2];

Default TLSv1 TLSv1.1 TLSv1.2

Context: http, server

Enables the specified protocols. The TLSv1.1 and TLSv1.2 parameters
work only when the OpenSSL library of version 1.0.1 or higher is used.

The TLSv1.1 and TLSv1.2 parameters are supported starting from
versions 1.1.13 and 1.0.12, so when the OpenSSL version 1.0.1 or higher is
used on older nginx versions, these protocols work, but cannot be disabled.

ssl session cache

Syntax: ssl_session_cache off | none | [builtin[:size]]

[shared:name:size];

Default none

Context: http, server

Sets the types and sizes of caches that store session parameters. A cache
can be of any of the following types:

off
the use of a session cache is strictly prohibited: nginx explicitly tells a
client that sessions may not be reused.

none
the use of a session cache is gently disallowed: nginx tells a client that
sessions may be reused, but does not actually store session parameters
in the cache.

builtin
a cache built in OpenSSL; used by one worker process only. The cache
size is specified in sessions. If size is not given, it is equal to 20480
sessions. Use of the built-in cache can cause memory fragmentation.

shared
a cache shared between all worker processes. The cache size is specified
in bytes; one megabyte can store about 4000 sessions. Each shared cache
should have an arbitrary name. A cache with the same name can be used
in several virtual servers.

Both cache types can be used simultaneously, for example:

ssl_session_cache builtin:1000 shared:SSL:10m;

but using only shared cache without the built-in cache should be more
efficient.

Nginx, Inc. p.220 of 379

CHAPTER 2. HTTP SERVER MODULES 2.42. MODULE NGX HTTP SSL MODULE

ssl session ticket key

Syntax: ssl_session_ticket_key file;

Default —

Context: http, server
This directive appeared in version 1.5.7.

Sets a file with the secret key used to encrypt and decrypt TLS session
tickets. The directive is necessary if the same key has to be shared between
multiple servers. By default, a randomly generated key is used.

If several keys are specified, only the first key is used to encrypt TLS session
tickets. This allows configuring key rotation, for example:

ssl_session_ticket_key current.key;
ssl_session_ticket_key previous.key;

The file must contain 48 bytes of random data and can be created using
the following command:

openssl rand 48 > ticket.key

ssl session tickets

Syntax: ssl_session_tickets on | off;

Default on

Context: http, server
This directive appeared in version 1.5.9.

Enables or disables session resumption through TLS session tickets.

ssl session timeout

Syntax: ssl_session_timeout time;

Default 5m

Context: http, server

Specifies a time during which a client may reuse the session parameters.

ssl stapling

Syntax: ssl_stapling on | off;

Default off

Context: http, server
This directive appeared in version 1.3.7.

Enables or disables stapling of OCSP responses by the server. Example:

ssl_stapling on;
resolver 192.0.2.1;

Nginx, Inc. p.221 of 379

http://tools.ietf.org/html/rfc5077
http://tools.ietf.org/html/rfc4366#section-3.6

CHAPTER 2. HTTP SERVER MODULES 2.42. MODULE NGX HTTP SSL MODULE

For the OCSP stapling to work, the certificate of the server certificate
issuer should be known. If the ssl certificate file does not contain intermediate
certificates, the certificate of the server certificate issuer should be present in
the ssl trusted certificate file.

For a resolution of the OCSP responder hostname, the resolver directive
should also be specified.

ssl stapling file

Syntax: ssl_stapling_file file;

Default —

Context: http, server
This directive appeared in version 1.3.7.

When set, the stapled OCSP response will be taken from the specified file
instead of querying the OCSP responder specified in the server certificate.

The file should be in the DER format as produced by the“openssl ocsp”
command.

ssl stapling responder

Syntax: ssl_stapling_responder url;

Default —

Context: http, server
This directive appeared in version 1.3.7.

Overrides the URL of the OCSP responder specified in the “Authority
Information Access” certificate extension.

Only “http://” OCSP responders are supported:

ssl_stapling_responder http://ocsp.example.com/;

ssl stapling verify

Syntax: ssl_stapling_verify on | off;

Default off

Context: http, server
This directive appeared in version 1.3.7.

Enables or disables verification of OCSP responses by the server.
For verification to work, the certificate of the server certificate issuer, the

root certificate, and all intermediate certificates should be configured as trusted
using the ssl trusted certificate directive.

ssl trusted certificate

Syntax: ssl_trusted_certificate file;

Default —

Context: http, server

Nginx, Inc. p.222 of 379

http://tools.ietf.org/html/rfc5280#section-4.2.2.1
http://tools.ietf.org/html/rfc5280#section-4.2.2.1

CHAPTER 2. HTTP SERVER MODULES 2.42. MODULE NGX HTTP SSL MODULE

This directive appeared in version 1.3.7.

Specifies a file with trusted CA certificates in the PEM format used to
verify client certificates and OCSP responses if ssl stapling is enabled.

In contrast to the certificate set by ssl client certificate, the list of these
certificates will not be sent to clients.

ssl verify client

Syntax: ssl_verify_client on | off | optional | optional_no_ca;

Default off

Context: http, server

Enables verification of client certificates. The verification result is stored
in the $ssl client verify variable.

The optional parameter (0.8.7+) requests the client certificate and
verifies it if the certificate is present.

The optional_no_ca parameter (1.3.8, 1.2.5) requests the client
certificate but does not require it to be signed by a trusted CA certificate.
This is intended for the use in cases when a service that is external to nginx
performs the actual certificate verification. The contents of the certificate is
accessible through the $ssl client cert variable.

ssl verify depth

Syntax: ssl_verify_depth number;

Default 1

Context: http, server

Sets the verification depth in the client certificates chain.

2.42.4 Error Processing

The ngx_http_ssl_module module supports several non-standard
error codes that can be used for redirects using the error page directive:

495
an error has occurred during the client certificate verification;

496
a client has not presented the required certificate;

497
a regular request has been sent to the HTTPS port.

The redirection happens after the request is fully parsed and the variables,
such as $request uri, $uri, $args and others, are available.

2.42.5 Embedded Variables

The ngx_http_ssl_module module supports several embedded vari-
ables:

Nginx, Inc. p.223 of 379

CHAPTER 2. HTTP SERVER MODULES 2.42. MODULE NGX HTTP SSL MODULE

$ssl cipher
returns the string of ciphers used for an established SSL connection;

$ssl client cert
returns the client certificate in the PEM format for an established SSL
connection, with each line except the first prepended with the tab
character; this is intended for the use in the proxy set header directive;

$ssl client fingerprint
returns the SHA1 fingerprint of the client certificate for an established
SSL connection (1.7.1);

$ssl client raw cert
returns the client certificate in the PEM format for an established SSL
connection;

$ssl client serial
returns the serial number of the client certificate for an established SSL
connection;

$ssl client s dn
returns the “subject DN” string of the client certificate for an established
SSL connection;

$ssl client i dn
returns the “issuer DN” string of the client certificate for an established
SSL connection;

$ssl client verify
returns the result of client certificate verification: “SUCCESS”,
“FAILED”, and “NONE” if a certificate was not present;

$ssl protocol
returns the protocol of an established SSL connection;

$ssl server name
returns the server name requested through SNI (1.7.0);

$ssl session id
returns the session identifier of an established SSL connection;

$ssl session reused
returns “r” if an SSL session was reused, or “.” otherwise (1.5.11).

Nginx, Inc. p.224 of 379

http://en.wikipedia.org/wiki/Server_Name_Indication

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP STATUS MODULE

2.43 Module ngx http status module

2.43.1 Summary . 225
2.43.2 Example Configuration 225
2.43.3 Directives . 226

status . 226
status format . 226
status zone . 227

2.43.4 Data . 227
2.43.5 Compatibility . 233

2.43.1 Summary

The ngx_http_status_module module provides access to various
status information.

This module is available as part of our commercial subscription.

2.43.2 Example Configuration

http {
upstream backend {

zone http_backend 64k;

server backend1.example.com weight=5;
server backend2.example.com;

}

proxy_cache_path /data/nginx/cache_backend keys_zone=cache_backend:10m;

server {
server_name backend.example.com;

location / {
proxy_pass http://backend;
proxy_cache cache_backend;

health_check;
}

status_zone server_backend;
}

server {
listen 127.0.0.1;

location /upstream_conf {
upstream_conf;

}

location /status {
status;

}

location = /status.html {
}

}
}

Nginx, Inc. p.225 of 379

http://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP STATUS MODULE

stream {
upstream backend {

zone stream_backend 64k;

server backend1.example.com:12345 weight=5;
server backend2.example.com:12345;

}

server {
listen 127.0.0.1:12345;
proxy_pass backend;
status_zone server_backend;
health_check;

}
}

Examples of status requests with this configuration:

http://127.0.0.1/status
http://127.0.0.1/status/nginx_version
http://127.0.0.1/status/caches/cache_backend
http://127.0.0.1/status/upstreams
http://127.0.0.1/status/upstreams/backend
http://127.0.0.1/status/upstreams/backend/peers/1
http://127.0.0.1/status/upstreams/backend/peers/1/weight
http://127.0.0.1/status/stream
http://127.0.0.1/status/stream/upstreams
http://127.0.0.1/status/stream/upstreams/backend
http://127.0.0.1/status/stream/upstreams/backend/peers/1
http://127.0.0.1/status/stream/upstreams/backend/peers/1/weight

The simple monitoring page is shipped with this distribution, accessible
as “/status.html” in the default configuration. It requires the locations
“/status” and “/status.html” to be configured as shown above.

2.43.3 Directives

status

Syntax: status;

Default —

Context: location

The status information will be accessible from the surrounding location.
Access to this location should be limited.

status format

Syntax: status_format json;

Syntax: status_format jsonp [callback];

Default json

Context: http, server, location

By default, status information is output in the JSON format.
Alternatively, data may be output as JSONP. The callback parameter

specifies the name of a callback function. The value can contain variables.

Nginx, Inc. p.226 of 379

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP STATUS MODULE

If parameter is omitted, or the computed value is an empty string, then
“ngx_status_jsonp_callback” is used.

status zone

Syntax: status_zone zone;

Default —

Context: server

Enables collection of virtual http or stream (1.7.11) server status
information in the specified zone. Several servers may share the same zone.

2.43.4 Data

The following status information is provided:

version
Version of the provided data set. The current version is 7.

nginx_version
Version of nginx.

address
The address of the server that accepted status request.

generation
The total number of configuration reloads.

load_timestamp
Time of the last reload of configuration, in milliseconds since Epoch.

timestamp
Current time in milliseconds since Epoch.

pid
The ID of the worker process that handled status request.

processes

respawned
The total number of abnormally terminated and respawned child
processes.

connections

accepted
The total number of accepted client connections.

dropped
The total number of dropped client connections.

active
The current number of active client connections.

idle
The current number of idle client connections.

ssl

Nginx, Inc. p.227 of 379

http://nginx.org/en/docs/control.html#reconfiguration

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP STATUS MODULE

handshakes
The total number of successful SSL handshakes.

handshakes_failed
The total number of failed SSL handshakes.

session_reuses
The total number of session reuses during SSL handshake.

requests

total
The total number of client requests.

current
The current number of client requests.

server_zones
For each status zone:

processing
The number of client requests that are currently being processed.

requests
The total number of client requests received from clients.

responses

total
The total number of responses sent to clients.

1xx, 2xx, 3xx, 4xx, 5xx
The number of responses with status codes 1xx, 2xx, 3xx, 4xx,
and 5xx.

discarded
The total number of requests completed without sending a response.

received
The total number of bytes received from clients.

sent
The total number of bytes sent to clients.

upstreams
For each dynamically configurable group, the following data are provided:

peers
For each server, the following data are provided:

id
The ID of the server.

server
An address of the server.

backup
A boolean value indicating whether the server is a backup
server.

weight
Weight of the server.

Nginx, Inc. p.228 of 379

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP STATUS MODULE

state
Current state, which may be one of“up”,“draining”,“down”,
“unavail”, or “unhealthy”.

active
The current number of active connections.

max_conns
The max conns limit for the server.

requests
The total number of client requests forwarded to this server.

responses

total
The total number of responses obtained from this server.

1xx, 2xx, 3xx, 4xx, 5xx
The number of responses with status codes 1xx, 2xx, 3xx,
4xx, and 5xx.

sent
The total number of bytes sent to this server.

received
The total number of bytes received from this server.

fails
The total number of unsuccessful attempts to communicate
with the server.

unavail
How many times the server became unavailable for client
requests (state “unavail”) due to the number of unsuccessful
attempts reaching the max fails threshold.

health_checks

checks
The total number of health check requests made.

fails
The number of failed health checks.

unhealthy
How many times the server became unhealthy (state
“unhealthy”).

last_passed
Boolean indicating if the last health check request was
successful and passed tests.

downtime
Total time the server was in the “unavail” and “unhealthy”
states.

downstart
The time (in milliseconds since Epoch) when the server became
“unavail” or “unhealthy”.

selected
The time (in milliseconds since Epoch) when the server was last

Nginx, Inc. p.229 of 379

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP STATUS MODULE

selected to process a request (1.7.5).

header_time
The average time to get the response header from the server
(1.7.10). The field is available when using the least time load
balancing method.

response_time
The average time to get the full response from the server
(1.7.10). The field is available when using the least time load
balancing method.

keepalive
The current number of idle keepalive connections.

zombies
The current number of servers removed from the group but still
processing active client requests.

queue
For the requests queue, the following data are provided:

size
The current number of requests in the queue.

max_size
The maximum number of requests that can be in the queue at
the same time.

overflows
The total number of requests rejected due to the queue overflow.

caches
For each cache (configured by proxy cache path and the likes):

size
The current size of the cache.

max_size
The limit on the maximum size of the cache specified in the
configuration.

cold
A boolean value indicating whether the “cache loader” process is
still loading data from disk into the cache.

hit, stale, updating, revalidated

responses
The total number of responses read from the cache (hits, or
stale responses due to proxy cache use stale and the likes).

bytes
The total number of bytes read from the cache.

miss, expired, bypass

responses
The total number of responses not taken from the cache (misses,
expires, or bypasses due to proxy cache bypass and the likes).

bytes

Nginx, Inc. p.230 of 379

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP STATUS MODULE

The total number of bytes read from the proxied server.

responses_written
The total number of responses written to the cache.

bytes_written
The total number of bytes written to the cache.

stream

server_zones
For each status zone:

processing
The number of client connections that are currently being
processed.

connections
The total number of connections accepted from clients.

sessions

total
The total number of completed client sessions.

2xx, 4xx, 5xx
The number of sessions completed with status codes 2xx,
4xx, or 5xx.

discarded
The total number of connections completed without creating a
session.

received
The total number of bytes received from clients.

sent
The total number of bytes sent to clients.

upstreams
For each dynamically configurable group, the following data are
provided:

peers
For each server the following data are provided:

id
The ID of the server.

server
An address of the server.

backup
A boolean value indicating whether the server is a backup
server.

weight
Weight of the server.

state
Current state, which may be one of “up”, “down”,
“unavail”, or “unhealthy”.

Nginx, Inc. p.231 of 379

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP STATUS MODULE

active
The current number of connections.

connections
The total number of client connections forwarded to this
server.

connect_time
The average time to connect to the upstream server. The
field is available when using the least time load balancing
method.

first_byte_time
The average time to receive the first byte of data. The
field is available when using the least time load balancing
method.

response_time
The average time to receive the last byte of data. The
field is available when using the least time load balancing
method.

sent
The total number of bytes sent to this server.

received
The total number of bytes received from this server.

fails
The total number of unsuccessful attempts to communicate
with the server.

unavail
How many times the server became unavailable for client
connections (state “unavail”) due to the number of
unsuccessful attempts reaching the max fails threshold.

health_checks

checks
The total number of health check requests made.

fails
The number of failed health checks.

unhealthy
How many times the server became unhealthy (state
“unhealthy”).

last_passed
Boolean indicating if the last health check request was
successful and passed tests.

downtime
Total time the server was in the “unavail” and
“unhealthy” states.

downstart
The time (in milliseconds since Epoch) when the server
became “unavail” or “unhealthy”.

Nginx, Inc. p.232 of 379

CHAPTER 2. HTTP SERVER MODULES 2.43. MODULE NGX HTTP STATUS MODULE

selected
The time (in milliseconds since Epoch) when the server was
last selected to process a connection.

2.43.5 Compatibility

• The sessions status data and the discarded field in stream server zones
were added in version 7.

• The zombies field was moved from nginx debug version in version 6.

• The ssl status data were added in version 6.

• The discarded field in server zones was added in version 6.

• The queue status data were added in version 6.

• The pid field was added in version 6.

• The list of servers in upstreams was moved into peers in version 6.

• The keepalive field of an upstream server was removed in version 5.

• The stream status data were added in version 5.

• The generation field was added in version 5.

• The respawned field in processes was added in version 5.

• The header time and response time fields in upstreams were added in
version 5.

• The selected field in upstreams was added in version 4.

• The draining state in upstreams was added in version 4.

• The id and max conns fields in upstreams were added in version 3.

• The revalidated field in caches was added in version 3.

• The server zones, caches, and load timestamp status data were added in
version 2.

Nginx, Inc. p.233 of 379

http://nginx.org/en/docs/debugging_log.html

CHAPTER 2. HTTP SERVER MODULES 2.44. MODULE NGX HTTP STUB STATUS MODULE

2.44 Module ngx http stub status module

2.44.1 Summary . 234
2.44.2 Example Configuration 234
2.44.3 Directives . 234

stub status . 234
2.44.4 Data . 235
2.44.5 Embedded Variables . 235

2.44.1 Summary

The ngx_http_stub_status_module module provides access to basic
status information.

This module is not built by default, it should be enabled with the
--with-http_stub_status_module configuration parameter.

2.44.2 Example Configuration

location /basic_status {
stub_status;

}

This configuration creates a simple web page with basic status data which
may look like as follows:

Active connections: 291
server accepts handled requests
16630948 16630948 31070465
Reading: 6 Writing: 179 Waiting: 106

2.44.3 Directives

stub status

Syntax: stub_status;

Default —

Context: server, location

The basic status information will be accessible from the surrounding
location.

In versions prior to 1.7.5, the directive syntax required an arbitrary
argument, for example, “stub_status on”.

Nginx, Inc. p.234 of 379

CHAPTER 2. HTTP SERVER MODULES 2.44. MODULE NGX HTTP STUB STATUS MODULE

2.44.4 Data

The following status information is provided:

Active connections
The current number of active client connections including Waiting
connections.

accepts
The total number of accepted client connections.

handled
The total number of handled connections. Generally, the parameter value
is the same as accepts unless some resource limits have been reached
(for example, the worker connections limit).

requests
The total number of client requests.

Reading
The current number of connections where nginx is reading the request
header.

Writing
The current number of connections where nginx is writing the response
back to the client.

Waiting
The current number of idle client connections waiting for a request.

2.44.5 Embedded Variables

The ngx_http_stub_status_module module supports the following
embedded variables (1.3.14):

$connections active
same as the Active connections value;

$connections reading
same as the Reading value;

$connections writing
same as the Writing value;

$connections waiting
same as the Waiting value.

Nginx, Inc. p.235 of 379

CHAPTER 2. HTTP SERVER MODULES 2.45. MODULE NGX HTTP SUB MODULE

2.45 Module ngx http sub module

2.45.1 Summary . 236
2.45.2 Example Configuration 236
2.45.3 Directives . 236

sub filter . 236
sub filter last modified 236
sub filter once . 237
sub filter types . 237

2.45.1 Summary

The ngx_http_sub_module module is a filter that modifies a response
by replacing one specified string by another.

This module is not built by default, it should be enabled with the
--with-http_sub_module configuration parameter.

2.45.2 Example Configuration

location / {
sub_filter ’<a href="http://127.0.0.1:8080/’ ’<a href="https://$host/’;
sub_filter ’<img src="http://127.0.0.1:8080/’ ’<img src="https://$host/’;
sub_filter_once on;

}

2.45.3 Directives

sub filter

Syntax: sub_filter string replacement;

Default —

Context: http, server, location

Sets a string to replace and a replacement string. The string to replace is
matched ignoring the case. The string to replace (1.9.4) and replacement string
can contain variables. Several sub_filter directives can be specified on one
configuration level (1.9.4). These directives are inherited from the previous
level if and only if there are no sub_filter directives defined on the current
level.

sub filter last modified

Syntax: sub_filter_last_modified on | off;

Default off

Context: http, server, location
This directive appeared in version 1.5.1.

Allows preserving the Last-Modified header field from the original
response during replacement to facilitate response caching.

Nginx, Inc. p.236 of 379

CHAPTER 2. HTTP SERVER MODULES 2.45. MODULE NGX HTTP SUB MODULE

By default, the header field is removed as contents of the response are
modified during processing.

sub filter once

Syntax: sub_filter_once on | off;

Default on

Context: http, server, location

Indicates whether to look for each string to replace once or repeatedly.

sub filter types

Syntax: sub_filter_types mime-type . . . ;

Default text/html

Context: http, server, location

Enables string replacement in responses with the specified MIME types in
addition to “text/html”. The special value “*” matches any MIME type
(0.8.29).

Nginx, Inc. p.237 of 379

CHAPTER 2. HTTP SERVER MODULES 2.46. MODULE NGX HTTP UPSTREAM MODULE

2.46 Module ngx http upstream module

2.46.1 Summary . 238
2.46.2 Example Configuration 238
2.46.3 Directives . 239

upstream . 239
server . 239
zone . 242
state . 242
hash . 242
ip hash . 243
keepalive . 243
ntlm . 245
least conn . 246
least time . 246
health check . 246
match . 248
queue . 249
sticky . 250
sticky cookie insert . 252

2.46.4 Embedded Variables . 252

2.46.1 Summary

The ngx_http_upstream_module module is used to define groups of
servers that can be referenced by the proxy pass, fastcgi pass, uwsgi pass,
scgi pass, and memcached pass directives.

2.46.2 Example Configuration

upstream backend {
server backend1.example.com weight=5;
server backend2.example.com:8080;
server unix:/tmp/backend3;

server backup1.example.com:8080 backup;
server backup2.example.com:8080 backup;

}

server {
location / {

proxy_pass http://backend;
}

}

Dynamically configurable group, available as part of our
commercial subscription:

resolver 10.0.0.1;

upstream dynamic {
zone upstream_dynamic 64k;

Nginx, Inc. p.238 of 379

http://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.46. MODULE NGX HTTP UPSTREAM MODULE

server backend1.example.com weight=5;
server backend2.example.com:8080 fail_timeout=5s slow_start=30s;
server 192.0.2.1 max_fails=3;
server backend3.example.com resolve;
server backend4.example.com service=http resolve;

server backup1.example.com:8080 backup;
server backup2.example.com:8080 backup;

}

server {
location / {

proxy_pass http://dynamic;
health_check;

}
}

2.46.3 Directives

upstream

Syntax: upstream name { . . . }
Default —

Context: http

Defines a group of servers. Servers can listen on different ports. In addition,
servers listening on TCP and UNIX-domain sockets can be mixed.

Example:

upstream backend {
server backend1.example.com weight=5;
server 127.0.0.1:8080 max_fails=3 fail_timeout=30s;
server unix:/tmp/backend3;

server backup1.example.com backup;
}

By default, requests are distributed between the servers using a weighted
round-robin balancing method. In the above example, each 7 requests will
be distributed as follows: 5 requests go to backend1.example.com and
one request to each of the second and third servers. If an error occurs during
communication with a server, the request will be passed to the next server, and
so on until all of the functioning servers will be tried. If a successful response
could not be obtained from any of the servers, the client will receive the result
of the communication with the last server.

server

Syntax: server address [parameters];

Default —

Context: upstream

Defines the address and other parameters of a server. The address can
be specified as a domain name or IP address, with an optional port, or as

Nginx, Inc. p.239 of 379

CHAPTER 2. HTTP SERVER MODULES 2.46. MODULE NGX HTTP UPSTREAM MODULE

a UNIX-domain socket path specified after the “unix:” prefix. If a port is
not specified, the port 80 is used. A domain name that resolves to several IP
addresses defines multiple servers at once.

The following parameters can be defined:

weight=number
sets the weight of the server, by default, 1.

max_conns=number
limits the maximum number of simultaneous active connections to the
proxied server (1.11.5). Default value is zero, meaning there is no limit.
If the server group does not reside in the shared memory, the limitation
works per each worker process.

If idle keepalive connections, multiple workers, and the shared memory
are enabled, the total number of active and idle connections to the
proxied server may exceed the max_conns value.

Since version 1.5.9 and prior to version 1.11.5, this parameter was
available as part of our commercial subscription.

max_fails=number
sets the number of unsuccessful attempts to communicate with the
server that should happen in the duration set by the fail_timeout
parameter to consider the server unavailable for a duration also set by
the fail_timeout parameter. By default, the number of unsuccessful
attempts is set to 1. The zero value disables the accounting of
attempts. What is considered an unsuccessful attempt is defined by
the proxy next upstream, fastcgi next upstream, uwsgi next upstream,
scgi next upstream, and memcached next upstream directives.

fail_timeout=time
sets

• the time during which the specified number of unsuccessful attempts
to communicate with the server should happen to consider the server
unavailable;

• and the period of time the server will be considered unavailable.

By default, the parameter is set to 10 seconds.

backup
marks the server as a backup server. It will be passed requests when the
primary servers are unavailable.

down
marks the server as permanently unavailable.

Additionally, the following parameters are available as part of our
commercial subscription:

Nginx, Inc. p.240 of 379

http://nginx.com/products/
http://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.46. MODULE NGX HTTP UPSTREAM MODULE

resolve
monitors changes of the IP addresses that correspond to a domain name
of the server, and automatically modifies the upstream configuration
without the need of restarting nginx (1.5.12). The server group must
reside in the shared memory.
In order for this parameter to work, the resolver directive must be
specified in the http block. Example:

http {
resolver 10.0.0.1;

upstream u {
zone ...;
...
server example.com resolve;

}
}

route=string
sets the server route name.

service=name
enables resolving of DNS SRV records and sets the service name (1.9.13).
In order for this parameter to work, it is necessary to specify the resolve
parameter for the server and specify a hostname without a port number.
If the service name does not contain a dot (“.”), then the RFC-compliant
name is constructed and the TCP protocol is added to the service prefix.
For example, to look up the _http._tcp.backend.example.com
SRV record, it is necessary to specify the directive:

server backend.example.com service=http resolve;

If the service name contains one or more dots, then the name is
constructed by joining the service prefix and the server name. For
example, to look up the _http._tcp.backend.example.com and
server1.backend.example.com SRV records, it is necessary to
specify the directives:

server backend.example.com service=_http._tcp resolve;
server example.com service=server1.backend resolve;

Highest-priority SRV records (records with the same lowest-number
priority value) are resolved as primary servers, the rest of SRV records
are resolved as backup servers. If the backup parameter is specified for
the server, high-priority SRV records are resolved as backup servers, the
rest of SRV records are ignored.

slow_start=time
sets the time during which the server will recover its weight from zero
to a nominal value, when unhealthy server becomes healthy, or when
the server becomes available after a period of time it was considered
unavailable. Default value is zero, i.e. slow start is disabled.

Nginx, Inc. p.241 of 379

https://tools.ietf.org/html/rfc2782
https://tools.ietf.org/html/rfc2782

CHAPTER 2. HTTP SERVER MODULES 2.46. MODULE NGX HTTP UPSTREAM MODULE

If there is only a single server in a group, max_fails, fail_timeout
and slow_start parameters are ignored, and such a server will never be
considered unavailable.

zone

Syntax: zone name [size];

Default —

Context: upstream
This directive appeared in version 1.9.0.

Defines the name and size of the shared memory zone that keeps the group’s
configuration and run-time state that are shared between worker processes.
Several groups may share the same zone. In this case, it is enough to specify
the size only once.

Additionally, as part of our commercial subscription, such groups allow
changing the group membership or modifying the settings of a particular server
without the need of restarting nginx. The configuration is accessible via a
special location handled by upstream conf.

state

Syntax: state file;

Default —

Context: upstream
This directive appeared in version 1.9.7.

Specifies a file that keeps the state of the dynamically configurable group.
Examples:

state /var/lib/nginx/state/servers.conf; # path for Linux
state /var/db/nginx/state/servers.conf; # path for FreeBSD

The state is currently limited to the list of servers with their parameters.
The file is read when parsing the configuration and is updated each time the
upstream configuration is changed. Changing the file content directly should
be avoided. The directive cannot be used along with the server directive.

Changes made during configuration reload or binary upgrade can be lost.

This directive is available as part of our commercial subscription.

hash

Syntax: hash key [consistent];

Default —

Context: upstream
This directive appeared in version 1.7.2.

Nginx, Inc. p.242 of 379

http://nginx.com/products/
http://nginx.org/en/docs/control.html#reconfiguration
http://nginx.org/en/docs/control.html#upgrade
http://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.46. MODULE NGX HTTP UPSTREAM MODULE

Specifies a load balancing method for a server group where the client-server
mapping is based on the hashed key value. The key can contain text, variables,
and their combinations. Note that adding or removing a server from the group
may result in remapping most of the keys to different servers. The method is
compatible with the Cache::Memcached Perl library.

If the consistent parameter is specified the ketama consistent hashing
method will be used instead. The method ensures that only a few keys will be
remapped to different servers when a server is added to or removed from the
group. This helps to achieve a higher cache hit ratio for caching servers. The
method is compatible with the Cache::Memcached::Fast Perl library with the
ketama points parameter set to 160.

ip hash

Syntax: ip_hash;

Default —

Context: upstream

Specifies that a group should use a load balancing method where requests
are distributed between servers based on client IP addresses. The first three
octets of the client IPv4 address, or the entire IPv6 address, are used as a
hashing key. The method ensures that requests from the same client will
always be passed to the same server except when this server is unavailable. In
the latter case client requests will be passed to another server. Most probably,
it will always be the same server as well.

IPv6 addresses are supported starting from versions 1.3.2 and 1.2.2.

If one of the servers needs to be temporarily removed, it should be marked
with the down parameter in order to preserve the current hashing of client IP
addresses.

Example:

upstream backend {
ip_hash;

server backend1.example.com;
server backend2.example.com;
server backend3.example.com down;
server backend4.example.com;

}

Until versions 1.3.1 and 1.2.2, it was not possible to specify a weight for
servers using the ip_hash load balancing method.

keepalive

Syntax: keepalive connections;

Default —

Context: upstream

Nginx, Inc. p.243 of 379

http://search.cpan.org/perldoc?Cache%3A%3AMemcached
http://www.last.fm/user/RJ/journal/2007/04/10/392555/
http://search.cpan.org/perldoc?Cache%3A%3AMemcached%3A%3AFast

CHAPTER 2. HTTP SERVER MODULES 2.46. MODULE NGX HTTP UPSTREAM MODULE

This directive appeared in version 1.1.4.

Activates the cache for connections to upstream servers.
The connections parameter sets the maximum number of idle keepalive

connections to upstream servers that are preserved in the cache of each worker
process. When this number is exceeded, the least recently used connections
are closed.

It should be particularly noted that the keepalive directive does
not limit the total number of connections to upstream servers that an
nginx worker process can open. The connections parameter should be set
to a number small enough to let upstream servers process new incoming
connections as well.

Example configuration of memcached upstream with keepalive connections:

upstream memcached_backend {
server 127.0.0.1:11211;
server 10.0.0.2:11211;

keepalive 32;
}

server {
...

location /memcached/ {
set $memcached_key $uri;
memcached_pass memcached_backend;

}

}

For HTTP, the proxy http version directive should be set to “1.1” and the
Connection header field should be cleared:

upstream http_backend {
server 127.0.0.1:8080;

keepalive 16;
}

server {
...

location /http/ {
proxy_pass http://http_backend;
proxy_http_version 1.1;
proxy_set_header Connection "";
...

}
}

Alternatively, HTTP/1.0 persistent connections can be used by passing
the Connection: Keep-Alive header field to an upstream server,
though this method is not recommended.

Nginx, Inc. p.244 of 379

CHAPTER 2. HTTP SERVER MODULES 2.46. MODULE NGX HTTP UPSTREAM MODULE

For FastCGI servers, it is required to set fastcgi keep conn for keepalive
connections to work:

upstream fastcgi_backend {
server 127.0.0.1:9000;

keepalive 8;
}

server {
...

location /fastcgi/ {
fastcgi_pass fastcgi_backend;
fastcgi_keep_conn on;
...

}
}

When using load balancer methods other than the default round-robin
method, it is necessary to activate them before the keepalive directive.

SCGI and uwsgi protocols do not have a notion of keepalive connections.

ntlm

Syntax: ntlm;

Default —

Context: upstream
This directive appeared in version 1.9.2.

Allows proxying requests with NTLM Authentication. The upstream
connection is bound to the client connection once the client sends a request
with the Authorization header field value starting with “Negotiate” or
“NTLM”. Further client requests will be proxied through the same upstream
connection, keeping the authentication context.

In order for NTLM authentication to work, it is necessary to enable
keepalive connections to upstream servers. The proxy http version directive
should be set to “1.1” and the Connection header field should be cleared:

upstream http_backend {
server 127.0.0.1:8080;

ntlm;
}

server {
...

location /http/ {
proxy_pass http://http_backend;
proxy_http_version 1.1;
proxy_set_header Connection "";
...

}
}

Nginx, Inc. p.245 of 379

https://en.wikipedia.org/wiki/Integrated_Windows_Authentication

CHAPTER 2. HTTP SERVER MODULES 2.46. MODULE NGX HTTP UPSTREAM MODULE

When using load balancer methods other than the default round-robin
method, it is necessary to activate them before the ntlm directive.

This directive is available as part of our commercial subscription.

least conn

Syntax: least_conn;

Default —

Context: upstream
This directive appeared in versions 1.3.1 and 1.2.2.

Specifies that a group should use a load balancing method where a request
is passed to the server with the least number of active connections, taking into
account weights of servers. If there are several such servers, they are tried in
turn using a weighted round-robin balancing method.

least time

Syntax: least_time header | last_byte;

Default —

Context: upstream
This directive appeared in version 1.7.10.

Specifies that a group should use a load balancing method where a request
is passed to the server with the least average response time and least number of
active connections, taking into account weights of servers. If there are several
such servers, they are tried in turn using a weighted round-robin balancing
method.

If the header parameter is specified, time to receive the response header
is used. If the last_byte parameter is specified, time to receive the full
response is used.

This directive is available as part of our commercial subscription.

health check

Syntax: health_check [parameters];

Default —

Context: location

Enables periodic health checks of the servers in a group referenced in the
surrounding location.

The following optional parameters are supported:

interval=time
sets the interval between two consecutive health checks, by default, 5
seconds;

Nginx, Inc. p.246 of 379

http://nginx.com/products/
http://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.46. MODULE NGX HTTP UPSTREAM MODULE

fails=number
sets the number of consecutive failed health checks of a particular server
after which this server will be considered unhealthy, by default, 1;

passes=number
sets the number of consecutive passed health checks of a particular server
after which the server will be considered healthy, by default, 1;

uri=uri
defines the URI used in health check requests, by default, “/”;

match=name
specifies the match block configuring the tests that a response should
pass in order for a health check to pass; by default, the response should
have status code 2xx or 3xx;

port=number
defines the port used when connecting to a server to perform a health
check (1.9.7); by default, equals the server port.

For example,

location / {
proxy_pass http://backend;
health_check;

}

will send “/” requests to each server in the backend group every five
seconds. If any communication error or timeout occurs, or a proxied server
responds with the status code other than 2xx or 3xx, the health check will fail,
and the server will be considered unhealthy. Client requests are not passed to
unhealthy servers.

Health checks can be configured to test the status code of a response,
presence of certain header fields and their values, and the body contents.
Tests are configured separately using the match directive and referenced in
the match parameter. For example:

http {
server {
...

location / {
proxy_pass http://backend;
health_check match=welcome;

}
}

match welcome {
status 200;
header Content-Type = text/html;
body ~ "Welcome to nginx!";

}
}

This configuration shows that in order for a health check to pass, the
response to a health check request should succeed, have status 200, content
type “text/html”, and contain “Welcome to nginx!” in the body.

The server group must reside in the shared memory.

Nginx, Inc. p.247 of 379

CHAPTER 2. HTTP SERVER MODULES 2.46. MODULE NGX HTTP UPSTREAM MODULE

If several health checks are defined for the same group of servers, a single
failure of any check will make the corresponding server be considered unhealthy.

Please note that most of the variables will have empty values when used
with health checks.

This directive is available as part of our commercial subscription.

match

Syntax: match name { . . . }
Default —

Context: http

Defines the named test set used to verify responses to health check requests.
The following items can be tested in a response:

status 200;
status is 200

status ! 500;
status is not 500

status 200 204;
status is 200 or 204

status ! 301 302;
status is neither 301 nor 302

status 200-399;
status is in the range from 200 to 399

status ! 400-599;
status is not in the range from 400 to 599

status 301-303 307;
status is either 301, 302, 303, or 307

header Content-Type = text/html;
header contains Content-Type with value text/html

header Content-Type != text/html;
header contains Content-Type with value other than text/html

header Connection ~ close;
header contains Connection with value matching regular expression
close

header Connection !~ close;
header contains Connection with value not matching regular
expression close

header Host;
header contains Host

header ! X-Accel-Redirect;
header lacks X-Accel-Redirect

Nginx, Inc. p.248 of 379

http://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.46. MODULE NGX HTTP UPSTREAM MODULE

body ~ "Welcome to nginx!";
body matches regular expression “Welcome to nginx!”

body !~ "Welcome to nginx!";
body does not match regular expression “Welcome to nginx!”

If several tests are specified, the response matches only if it matches all
tests.

Only the first 256k of the response body are examined.

Examples:

status is 200, content type is "text/html",
and body contains "Welcome to nginx!"
match welcome {

status 200;
header Content-Type = text/html;
body ~ "Welcome to nginx!";

}

status is not one of 301, 302, 303, or 307, and header does not have "Refresh
:"

match not_redirect {
status ! 301-303 307;
header ! Refresh;

}

status ok and not in maintenance mode
match server_ok {

status 200-399;
body !~ "maintenance mode";

}

This directive is available as part of our commercial subscription.

queue

Syntax: queue number [timeout=time];

Default —

Context: upstream
This directive appeared in version 1.5.12.

If an upstream server cannot be selected immediately while processing a
request, and there are the servers in the group that have reached the max -
conns limit, the request will be placed into the queue. The directive specifies
the maximum number of requests that can be in the queue at the same time.
If the queue is filled up, or the server to pass the request to cannot be selected
within the time period specified in the timeout parameter, the 502 Bad
Gateway error will be returned to the client.

The default value of the timeout parameter is 60 seconds.

Nginx, Inc. p.249 of 379

http://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.46. MODULE NGX HTTP UPSTREAM MODULE

This directive is available as part of our commercial subscription.

sticky

Syntax: sticky cookie name [expires=time] [domain=domain] [httponly]

[secure] [path=path];

Syntax: sticky route $variable . . . ;

Syntax: sticky learn create=$variable lookup=$variable zone=name:size

[timeout=time];

Default —

Context: upstream
This directive appeared in version 1.5.7.

Enables session affinity, which causes requests from the same client to be
passed to the same server in a group of servers. Three methods are available:

cookie
When the cookie method is used, information about the designated
server is passed in an HTTP cookie generated by nginx:

upstream backend {
server backend1.example.com;
server backend2.example.com;

sticky cookie srv_id expires=1h domain=.example.com path=/;
}

A request that comes from a client not yet bound to a particular server
is passed to the server selected by the configured balancing method.
Further requests with this cookie will be passed to the designated server.
If the designated server cannot process a request, the new server is
selected as if the client has not been bound yet.
The first parameter sets the name of the cookie to be set or inspected.
Additional parameters may be as follows:

expires=time
Sets the time for which a browser should keep the cookie.
The special value max will cause the cookie to expire on
“31 Dec 2037 23:55:55 GMT”. If the parameter is not
specified, it will cause the cookie to expire at the end of a browser
session.

domain=domain
Defines the domain for which the cookie is set. Parameter value can
contain variables (1.11.5).

httponly
Adds the HttpOnly attribute to the cookie (1.7.11).

secure
Adds the Secure attribute to the cookie (1.7.11).

path=path
Defines the path for which the cookie is set.

Nginx, Inc. p.250 of 379

http://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.46. MODULE NGX HTTP UPSTREAM MODULE

If any parameters are omitted, the corresponding cookie fields are not
set.

route
When the route method is used, proxied server assigns client a route
on receipt of the first request. All subsequent requests from this client
will carry routing information in a cookie or URI. This information is
compared with the “route” parameter of the server directive to identify
the server to which the request should be proxied. If the designated server
cannot process a request, the new server is selected by the configured
balancing method as if there is no routing information in the request.
The parameters of the route method specify variables that may contain
routing information. The first non-empty variable is used to find the
matching server.
Example:

map $cookie_jsessionid $route_cookie {
~.+\.(?P<route>\w+)$ $route;

}

map $request_uri $route_uri {
~jsessionid=.+\.(?P<route>\w+)$ $route;

}

upstream backend {
server backend1.example.com route=a;
server backend2.example.com route=b;

sticky route $route_cookie $route_uri;
}

Here, the route is taken from the “JSESSIONID” cookie if present in a
request. Otherwise, the route from the URI is used.

learn
When the learn method (1.7.1) is used, nginx analyzes upstream server
responses and learns server-initiated sessions usually passed in an HTTP
cookie.

upstream backend {
server backend1.example.com:8080;
server backend2.example.com:8081;

sticky learn
create=$upstream_cookie_examplecookie
lookup=$cookie_examplecookie
zone=client_sessions:1m;

}

In the example, the upstream server creates a session by setting the
cookie “EXAMPLECOOKIE” in the response. Further requests with this
cookie will be passed to the same server. If the server cannot process the
request, the new server is selected as if the client has not been bound
yet.
The parameters create and lookup specify variables that indicate how
new sessions are created and existing sessions are searched, respectively.

Nginx, Inc. p.251 of 379

CHAPTER 2. HTTP SERVER MODULES 2.46. MODULE NGX HTTP UPSTREAM MODULE

Both parameters may be specified more than once, in which case the first
non-empty variable is used.
Sessions are stored in a shared memory zone, whose name and size are
configured by the zone parameter. One megabyte zone can store about
8000 sessions on the 64-bit platform. The sessions that are not accessed
during the time specified by the timeout parameter get removed from
the zone. By default, timeout is set to 10 minutes.

This directive is available as part of our commercial subscription.

sticky cookie insert

Syntax: sticky_cookie_insert name [expires=time] [domain=domain]

[path=path];

Default —

Context: upstream

This directive is obsolete since version 1.5.7. An equivalent sticky directive
with a new syntax should be used instead:

sticky cookie name [expires=time] [domain=domain]
[path=path];

2.46.4 Embedded Variables

The ngx_http_upstream_module module supports the following
embedded variables:

$upstream addr
keeps the IP address and port, or the path to the UNIX-domain
socket of the upstream server. If several servers were contacted during
request processing, their addresses are separated by commas, e.g.
“192.168.1.1:80, 192.168.1.2:80, unix:/tmp/sock”.
If an internal redirect from one server group to another hap-
pens, initiated by X-Accel-Redirect or error page, then the
server addresses from different groups are separated by colons, e.g.
“192.168.1.1:80, 192.168.1.2:80, unix:/tmp/sock : 192.168.10.1:80, 192.168.10.2:80”.

$upstream bytes received
number of bytes received from an upstream server (1.11.4). Values from
several connections are separated by commas and colons like addresses
in the $upstream addr variable.

$upstream cache status
keeps the status of accessing a response cache (0.8.3). The status
can be either “MISS”, “BYPASS”, “EXPIRED”, “STALE”, “UPDATING”,
“REVALIDATED”, or “HIT”.

Nginx, Inc. p.252 of 379

http://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.46. MODULE NGX HTTP UPSTREAM MODULE

$upstream connect time
keeps time spent on establishing a connection with the upstream server
(1.9.1); the time is kept in seconds with millisecond resolution. In case of
SSL, includes time spent on handshake. Times of several connections are
separated by commas and colons like addresses in the $upstream addr
variable.

$upstream cookie name
cookie with the specified name sent by the upstream server in the
Set-Cookie response header field (1.7.1). Only the cookies from the
response of the last server are saved.

$upstream header time
keeps time spent on receiving the response header from the upstream
server (1.7.10); the time is kept in seconds with millisecond resolution.
Times of several responses are separated by commas and colons like
addresses in the $upstream addr variable.

$upstream http name
keep server response header fields. For example, the Server response
header field is available through the $upstream http server variable. The
rules of converting header field names to variable names are the same
as for the variables that start with the “$http ” prefix. Only the header
fields from the response of the last server are saved.

$upstream response length
keeps the length of the response obtained from the upstream server
(0.7.27); the length is kept in bytes. Lengths of several responses are
separated by commas and colons like addresses in the $upstream addr
variable.

$upstream response time
keeps time spent on receiving the response from the upstream server; the
time is kept in seconds with millisecond resolution. Times of several
responses are separated by commas and colons like addresses in the
$upstream addr variable.

$upstream status
keeps status code of the response obtained from the upstream server.
Status codes of several responses are separated by commas and colons
like addresses in the $upstream addr variable.

Nginx, Inc. p.253 of 379

CHAPTER 2. HTTP SERVER MODULES 2.47. MODULE NGX HTTP UPSTREAM CONF MODULE

2.47 Module ngx http upstream conf module

2.47.1 Summary . 254
2.47.2 Example Configuration 254
2.47.3 Directives . 254

upstream conf . 254

2.47.1 Summary

The ngx_http_upstream_conf_module module allows configuring
upstream server groups on-the-fly via a simple HTTP interface without the
need of restarting nginx. The http or stream server group must reside in the
shared memory.

This module is available as part of our commercial subscription.

2.47.2 Example Configuration

upstream backend {
zone upstream_backend 64k;

...
}

server {
location /upstream_conf {

upstream_conf;
allow 127.0.0.1;
deny all;

}
}

2.47.3 Directives

upstream conf

Syntax: upstream_conf;

Default —

Context: location

Turns on the HTTP interface of upstream configuration in the surrounding
location. Access to this location should be limited.

Configuration commands can be used to:

• view the group configuration;

• view, modify, or remove a server;

• add a new server.

Nginx, Inc. p.254 of 379

http://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.47. MODULE NGX HTTP UPSTREAM CONF MODULE

Since addresses in a group are not required to be unique, specific servers
in a group are referenced by their IDs. IDs are assigned automatically and
shown when adding a new server or viewing the group configuration.

A configuration command consists of parameters passed as request
arguments, for example:

http://127.0.0.1/upstream_conf?upstream=backend

The following parameters are supported:

stream=
Selects a stream upstream server group. Without this parameter, selects
an http upstream server group.

upstream=name
Selects a group to work with. This parameter is mandatory.

id=number
Selects a server for viewing, modifying, or removing.

remove=
Removes a server from the group.

add=
Adds a new server to the group.

backup=
Required to add a backup server.

Before version 1.7.2, backup= was also required to view, modify, or
remove existing backup servers.

server=address
Same as the“address”parameter of the http or stream upstream server.
When adding a server, it is possible to specify it as a domain name.
In this case, changes of the IP addresses that correspond to a domain
name will be monitored and automatically applied to the upstream
configuration without the need of restarting nginx (1.7.2). This requires
the “resolver” directive in the http or stream block. See also the
“resolve” parameter of the http or stream upstream server.

service=name
Same as the“service”parameter of the http or stream upstream server
(1.9.13).

weight=number
Same as the “weight” parameter of the http or stream upstream server.

max_conns=number
Same as the “max_conns” parameter of the http or stream upstream
server.

max_fails=number
Same as the “max_fails” parameter of the http or stream upstream
server.

Nginx, Inc. p.255 of 379

CHAPTER 2. HTTP SERVER MODULES 2.47. MODULE NGX HTTP UPSTREAM CONF MODULE

fail_timeout=time
Same as the“fail_timeout”parameter of the http or stream upstream
server.

slow_start=time
Same as the “slow_start” parameter of the http or stream upstream
server.

down=
Same as the “down” parameter of the http or stream upstream server.

drain=
Puts the http upstream server into the “draining” mode (1.7.5). In this
mode, only requests bound to the server will be proxied to it.

up=
The opposite of the “down” parameter of the http or stream upstream
server.

route=string
Same as the “route” parameter of the http upstream server.

The first three parameters select an object. This can be either the whole
http or stream upstream server group, or a specific server. Without other
parameters, the configuration of the selected group or server is shown.

For example, to view the configuration of the whole group, send:

http://127.0.0.1/upstream_conf?upstream=backend

To view the configuration of a specific server, also specify its ID:

http://127.0.0.1/upstream_conf?upstream=backend&id=42

To add a new server, specify its address in the “server=” parameter.
Without other parameters specified, a server will be added with other
parameters set to their default values (see the http or stream “server”
directive).

For example, to add a new primary server, send:

http://127.0.0.1/upstream_conf?add=&upstream=backend&server=127.0.0.1:8080

To add a new backup server, send:

http://127.0.0.1/upstream_conf?add=&upstream=backend&backup=&server
=127.0.0.1:8080

To add a new primary server, set its parameters to non-default values and
mark it as “down”, send:

http://127.0.0.1/upstream_conf?add=&upstream=backend&server=127.0.0.1:8080&
weight=2&down=

To remove a server, specify its ID:

Nginx, Inc. p.256 of 379

CHAPTER 2. HTTP SERVER MODULES 2.47. MODULE NGX HTTP UPSTREAM CONF MODULE

http://127.0.0.1/upstream_conf?remove=&upstream=backend&id=42

To mark an existing server as “down”, send:

http://127.0.0.1/upstream_conf?upstream=backend&id=42&down=

To modify the address of an existing server, send:

http://127.0.0.1/upstream_conf?upstream=backend&id=42&server=192.0.2.3:8123

To modify other parameters of an existing server, send:

http://127.0.0.1/upstream_conf?upstream=backend&id=42&max_fails=3&weight=4

The above examples are for an http upstream server group. Similar
examples for a stream upstream server group require the “stream=”
parameter.

Nginx, Inc. p.257 of 379

CHAPTER 2. HTTP SERVER MODULES 2.48. MODULE NGX HTTP USERID MODULE

2.48 Module ngx http userid module

2.48.1 Summary . 258
2.48.2 Example Configuration 258
2.48.3 Directives . 258

userid . 258
userid domain . 259
userid expires . 259
userid mark . 259
userid name . 259
userid p3p . 260
userid path . 260
userid service . 260

2.48.4 Embedded Variables . 260

2.48.1 Summary

The ngx_http_userid_module module sets cookies suitable for client
identification. Received and set cookies can be logged using the embedded
variables $uid got and $uid set. This module is compatible with the mod uid
module for Apache.

2.48.2 Example Configuration

userid on;
userid_name uid;
userid_domain example.com;
userid_path /;
userid_expires 365d;
userid_p3p ’policyref="/w3c/p3p.xml", CP="CUR ADM OUR NOR STA NID"’;

2.48.3 Directives

userid

Syntax: userid on | v1 | log | off;

Default off

Context: http, server, location

Enables or disables setting cookies and logging the received cookies:

on
enables the setting of version 2 cookies and logging of the received
cookies;

v1
enables the setting of version 1 cookies and logging of the received
cookies;

Nginx, Inc. p.258 of 379

http://www.lexa.ru/programs/mod-uid-eng.html

CHAPTER 2. HTTP SERVER MODULES 2.48. MODULE NGX HTTP USERID MODULE

log
disables the setting of cookies, but enables logging of the received cookies;

off
disables the setting of cookies and logging of the received cookies.

userid domain

Syntax: userid_domain name | none;

Default none

Context: http, server, location

Defines a domain for which the cookie is set. The none parameter disables
setting of a domain for the cookie.

userid expires

Syntax: userid_expires time | max | off;

Default off

Context: http, server, location

Sets a time during which a browser should keep the cookie. The parameter
max will cause the cookie to expire on “31 Dec 2037 23:55:55 GMT”.
The parameter off will cause the cookie to expire at the end of a browser
session.

userid mark

Syntax: userid_mark letter | digit | = | off;

Default off

Context: http, server, location

If the parameter is not off, enables the cookie marking mechanism and sets
the character used as a mark. This mechanism is used to add or change userid -
p3p and/or a cookie expiration time while preserving the client identifier. A
mark can be any letter of the English alphabet (case-sensitive), digit, or the
“=” character.

If the mark is set, it is compared with the first padding symbol in the
base64 representation of the client identifier passed in a cookie. If they do not
match, the cookie is resent with the specified mark, expiration time, and P3P
header.

userid name

Syntax: userid_name name;

Default uid

Context: http, server, location

Sets the cookie name.

Nginx, Inc. p.259 of 379

CHAPTER 2. HTTP SERVER MODULES 2.48. MODULE NGX HTTP USERID MODULE

userid p3p

Syntax: userid_p3p string | none;

Default none

Context: http, server, location

Sets a value for the P3P header field that will be sent along with the cookie.
If the directive is set to the special value none, the P3P header will not be
sent in a response.

userid path

Syntax: userid_path path;

Default /

Context: http, server, location

Defines a path for which the cookie is set.

userid service

Syntax: userid_service number;

Default IP address of the server

Context: http, server, location

If identifiers are issued by multiple servers (services), each service should be
assigned its own number to ensure that client identifiers are unique. For version
1 cookies, the default value is zero. For version 2 cookies, the default value is
the number composed from the last four octets of the server’s IP address.

2.48.4 Embedded Variables

The ngx_http_userid_module module supports the following embed-
ded variables:

$uid got
The cookie name and received client identifier.

$uid reset
If the variable is set to a non-empty string that is not “0”, the client
identifiers are reset. The special value “log” additionally leads to the
output of messages about the reset identifiers to the error log.

$uid set
The cookie name and sent client identifier.

Nginx, Inc. p.260 of 379

CHAPTER 2. HTTP SERVER MODULES 2.49. MODULE NGX HTTP UWSGI MODULE

2.49 Module ngx http uwsgi module

2.49.1 Summary . 262
2.49.2 Example Configuration 262
2.49.3 Directives . 262

uwsgi bind . 262
uwsgi buffer size . 263
uwsgi buffering . 263
uwsgi buffers . 263
uwsgi busy buffers size 264
uwsgi cache . 264
uwsgi cache bypass . 264
uwsgi cache key . 264
uwsgi cache lock . 265
uwsgi cache lock age . 265
uwsgi cache lock timeout 265
uwsgi cache methods . 265
uwsgi cache min uses . 266
uwsgi cache path . 266
uwsgi cache purge . 267
uwsgi cache revalidate 268
uwsgi cache use stale . 268
uwsgi cache valid . 269
uwsgi connect timeout 269
uwsgi force ranges . 270
uwsgi hide header . 270
uwsgi ignore client abort 270
uwsgi ignore headers . 270
uwsgi intercept errors 271
uwsgi limit rate . 271
uwsgi max temp file size 271
uwsgi modifier1 . 272
uwsgi modifier2 . 272
uwsgi next upstream . 272
uwsgi next upstream timeout 273
uwsgi next upstream tries 273
uwsgi no cache . 273
uwsgi param . 274
uwsgi pass . 274
uwsgi pass header . 274
uwsgi pass request body 275
uwsgi pass request headers 275
uwsgi read timeout . 275
uwsgi request buffering 275
uwsgi send timeout . 276
uwsgi ssl certificate . 276

Nginx, Inc. p.261 of 379

CHAPTER 2. HTTP SERVER MODULES 2.49. MODULE NGX HTTP UWSGI MODULE

uwsgi ssl certificate key 276
uwsgi ssl ciphers . 276
uwsgi ssl crl . 276
uwsgi ssl name . 277
uwsgi ssl password file 277
uwsgi ssl protocols . 277
uwsgi ssl server name 277
uwsgi ssl session reuse 278
uwsgi ssl trusted certificate 278
uwsgi ssl verify . 278
uwsgi ssl verify depth 278
uwsgi store . 278
uwsgi store access . 279
uwsgi temp file write size 279
uwsgi temp path . 280

2.49.1 Summary

The ngx_http_uwsgi_module module allows passing requests to a
uwsgi server.

2.49.2 Example Configuration

location / {
include uwsgi_params;
uwsgi_pass localhost:9000;

}

2.49.3 Directives

uwsgi bind

Syntax: uwsgi_bind address [transparent] | off;

Default —

Context: http, server, location

Makes outgoing connections to a uwsgi server originate from the specified
local IP address with an optional port (1.11.2). Parameter value can contain
variables (1.3.12). The special value off (1.3.12) cancels the effect of the
uwsgi_bind directive inherited from the previous configuration level, which
allows the system to auto-assign the local IP address and port.

The transparent parameter (1.11.0) allows outgoing connections to a
uwsgi server originate from a non-local IP address, for example, from a real IP
address of a client:

uwsgi_bind $remote_addr transparent;

Nginx, Inc. p.262 of 379

CHAPTER 2. HTTP SERVER MODULES 2.49. MODULE NGX HTTP UWSGI MODULE

In order for this parameter to work, it is necessary to run nginx worker
processes with the superuser privileges and configure kernel routing table to
intercept network traffic from the uwsgi server.

uwsgi buffer size

Syntax: uwsgi_buffer_size size;

Default 4k|8k

Context: http, server, location

Sets the size of the buffer used for reading the first part of the response
received from the uwsgi server. This part usually contains a small response
header. By default, the buffer size is equal to one memory page. This is either
4K or 8K, depending on a platform. It can be made smaller, however.

uwsgi buffering

Syntax: uwsgi_buffering on | off;

Default on

Context: http, server, location

Enables or disables buffering of responses from the uwsgi server.
When buffering is enabled, nginx receives a response from the uwsgi server

as soon as possible, saving it into the buffers set by the uwsgi buffer size and
uwsgi buffers directives. If the whole response does not fit into memory, a part
of it can be saved to a temporary file on the disk. Writing to temporary files
is controlled by the uwsgi max temp file size and uwsgi temp file write size
directives.

When buffering is disabled, the response is passed to a client synchronously,
immediately as it is received. nginx will not try to read the whole response
from the uwsgi server. The maximum size of the data that nginx can receive
from the server at a time is set by the uwsgi buffer size directive.

Buffering can also be enabled or disabled by passing “yes” or “no” in the
X-Accel-Buffering response header field. This capability can be disabled
using the uwsgi ignore headers directive.

uwsgi buffers

Syntax: uwsgi_buffers number size;

Default 8 4k|8k

Context: http, server, location

Sets the number and size of the buffers used for reading a response from
the uwsgi server, for a single connection. By default, the buffer size is equal to
one memory page. This is either 4K or 8K, depending on a platform.

Nginx, Inc. p.263 of 379

CHAPTER 2. HTTP SERVER MODULES 2.49. MODULE NGX HTTP UWSGI MODULE

uwsgi busy buffers size

Syntax: uwsgi_busy_buffers_size size;

Default 8k|16k

Context: http, server, location

When buffering of responses from the uwsgi server is enabled, limits the
total size of buffers that can be busy sending a response to the client while the
response is not yet fully read. In the meantime, the rest of the buffers can be
used for reading the response and, if needed, buffering part of the response to
a temporary file. By default, size is limited by the size of two buffers set by
the uwsgi buffer size and uwsgi buffers directives.

uwsgi cache

Syntax: uwsgi_cache zone | off;

Default off

Context: http, server, location

Defines a shared memory zone used for caching. The same zone can be
used in several places. Parameter value can contain variables (1.7.9). The off
parameter disables caching inherited from the previous configuration level.

uwsgi cache bypass

Syntax: uwsgi_cache_bypass string . . . ;

Default —

Context: http, server, location

Defines conditions under which the response will not be taken from a cache.
If at least one value of the string parameters is not empty and is not equal to
“0” then the response will not be taken from the cache:

uwsgi_cache_bypass $cookie_nocache $arg_nocache$arg_comment;
uwsgi_cache_bypass $http_pragma $http_authorization;

Can be used along with the uwsgi no cache directive.

uwsgi cache key

Syntax: uwsgi_cache_key string;

Default —

Context: http, server, location

Defines a key for caching, for example

uwsgi_cache_key localhost:9000$request_uri;

Nginx, Inc. p.264 of 379

CHAPTER 2. HTTP SERVER MODULES 2.49. MODULE NGX HTTP UWSGI MODULE

uwsgi cache lock

Syntax: uwsgi_cache_lock on | off;

Default off

Context: http, server, location
This directive appeared in version 1.1.12.

When enabled, only one request at a time will be allowed to populate a new
cache element identified according to the uwsgi cache key directive by passing
a request to a uwsgi server. Other requests of the same cache element will
either wait for a response to appear in the cache or the cache lock for this
element to be released, up to the time set by the uwsgi cache lock timeout
directive.

uwsgi cache lock age

Syntax: uwsgi_cache_lock_age time;

Default 5s

Context: http, server, location
This directive appeared in version 1.7.8.

If the last request passed to the uwsgi server for populating a new cache
element has not completed for the specified time, one more request may be
passed to the uwsgi server.

uwsgi cache lock timeout

Syntax: uwsgi_cache_lock_timeout time;

Default 5s

Context: http, server, location
This directive appeared in version 1.1.12.

Sets a timeout for uwsgi cache lock. When the time expires, the request
will be passed to the uwsgi server, however, the response will not be cached.

Before 1.7.8, the response could be cached.

uwsgi cache methods

Syntax: uwsgi_cache_methods GET | HEAD | POST . . . ;

Default GET HEAD

Context: http, server, location

If the client request method is listed in this directive then the response will
be cached. “GET” and “HEAD” methods are always added to the list, though
it is recommended to specify them explicitly. See also the uwsgi no cache
directive.

Nginx, Inc. p.265 of 379

CHAPTER 2. HTTP SERVER MODULES 2.49. MODULE NGX HTTP UWSGI MODULE

uwsgi cache min uses

Syntax: uwsgi_cache_min_uses number;

Default 1

Context: http, server, location

Sets the number of requests after which the response will be cached.

uwsgi cache path

Syntax: uwsgi_cache_path path [levels=levels]

[use_temp_path=on|off] keys_zone=name:size [inactive=time]

[max_size=size] [manager_files=number] [manager_sleep=time]

[manager_threshold=time] [loader_files=number]

[loader_sleep=time] [loader_threshold=time]

[purger=on|off] [purger_files=number] [purger_sleep=time]

[purger_threshold=time];

Default —

Context: http

Sets the path and other parameters of a cache. Cache data are stored in
files. The file name in a cache is a result of applying the MD5 function to
the cache key. The levels parameter defines hierarchy levels of a cache:
from 1 to 3, each level accepts values 1 or 2. For example, in the following
configuration

uwsgi_cache_path /data/nginx/cache levels=1:2 keys_zone=one:10m;

file names in a cache will look like this:

/data/nginx/cache/c/29/b7f54b2df7773722d382f4809d65029c

A cached response is first written to a temporary file, and then the file
is renamed. Starting from version 0.8.9, temporary files and the cache can
be put on different file systems. However, be aware that in this case a file is
copied across two file systems instead of the cheap renaming operation. It is
thus recommended that for any given location both cache and a directory
holding temporary files are put on the same file system. A directory for
temporary files is set based on the use_temp_path parameter (1.7.10). If
this parameter is omitted or set to the value on, the directory set by the
uwsgi temp path directive for the given location will be used. If the value is
set to off, temporary files will be put directly in the cache directory.

In addition, all active keys and information about data are stored in a
shared memory zone, whose name and size are configured by the keys_zone
parameter. One megabyte zone can store about 8 thousand keys.

Cached data that are not accessed during the time specified by the
inactive parameter get removed from the cache regardless of their freshness.
By default, inactive is set to 10 minutes.

Nginx, Inc. p.266 of 379

CHAPTER 2. HTTP SERVER MODULES 2.49. MODULE NGX HTTP UWSGI MODULE

The special “cache manager” process monitors the maximum cache
size set by the max_size parameter. When this size is exceeded,
it removes the least recently used data. The data is removed in
iterations configured by manager_files, manager_threshold, and
manager_sleep parameters (1.11.5). During one iteration no more than
manager_files items are deleted (by default, 100). The duration of one
iteration is limited by the manager_threshold parameter (by default, 200
milliseconds). Between iterations, a pause configured by the manager_sleep
parameter (by default, 50 milliseconds) is made.

A minute after the start the special “cache loader” process is activated. It
loads information about previously cached data stored on file system into a
cache zone. The loading is also done in iterations. During one iteration no
more than loader_files items are loaded (by default, 100). Besides, the
duration of one iteration is limited by the loader_threshold parameter
(by default, 200 milliseconds). Between iterations, a pause configured by the
loader_sleep parameter (by default, 50 milliseconds) is made.

Additionally, the following parameters are available as part of our
commercial subscription:

purger=on|off
Instructs whether cache entries that match a wildcard key will be
removed from the disk by the cache purger (1.7.12). Setting the
parameter to on (default is off) will activate the “cache purger” process
that permanently iterates through all cache entries and deletes the entries
that match the wildcard key.

purger_files=number
Sets the number of items that will be scanned during one iteration
(1.7.12). By default, purger_files is set to 10.

purger_threshold=number
Sets the duration of one iteration (1.7.12). By default,
purger_threshold is set to 50 milliseconds.

purger_sleep=number
Sets a pause between iterations (1.7.12). By default, purger_sleep is
set to 50 milliseconds.

uwsgi cache purge

Syntax: uwsgi_cache_purgestring . . . ;

Default —

Context: http, server, location
This directive appeared in version 1.5.7.

Defines conditions under which the request will be considered a cache purge
request. If at least one value of the string parameters is not empty and
is not equal to “0” then the cache entry with a corresponding cache key is
removed. The result of successful operation is indicated by returning the 204
No Content response.

Nginx, Inc. p.267 of 379

http://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.49. MODULE NGX HTTP UWSGI MODULE

If the cache key of a purge request ends with an asterisk (“*”), all cache
entries matching the wildcard key will be removed from the cache. However,
these entries will remain on the disk until they are deleted for either inactivity,
or processed by the cache purger (1.7.12), or a client attempts to access them.

Example configuration:

uwsgi_cache_path /data/nginx/cache keys_zone=cache_zone:10m;

map $request_method $purge_method {
PURGE 1;
default 0;

}

server {
...
location / {

uwsgi_pass backend;
uwsgi_cache cache_zone;
uwsgi_cache_key $uri;
uwsgi_cache_purge $purge_method;

}
}

This functionality is available as part of our commercial subscription.

uwsgi cache revalidate

Syntax: uwsgi_cache_revalidate on | off;

Default off

Context: http, server, location
This directive appeared in version 1.5.7.

Enables revalidation of expired cache items using conditional requests with
the If-Modified-Since and If-None-Match header fields.

uwsgi cache use stale

Syntax: uwsgi_cache_use_stale error | timeout | invalid_header |
updating | http_500 | http_503 | http_403 | http_404 | off
. . . ;

Default off

Context: http, server, location

Determines in which cases a stale cached response can be used when an
error occurs during communication with the uwsgi server. The directive’s
parameters match the parameters of the uwsgi next upstream directive.

The error parameter also permits using a stale cached response if a uwsgi
server to process a request cannot be selected.

Additionally, the updating parameter permits using a stale cached
response if it is currently being updated. This allows minimizing the number
of accesses to uwsgi servers when updating cached data.

To minimize the number of accesses to uwsgi servers when populating a
new cache element, the uwsgi cache lock directive can be used.

Nginx, Inc. p.268 of 379

http://nginx.com/products/

CHAPTER 2. HTTP SERVER MODULES 2.49. MODULE NGX HTTP UWSGI MODULE

uwsgi cache valid

Syntax: uwsgi_cache_valid [code . . .] time;

Default —

Context: http, server, location

Sets caching time for different response codes. For example, the following
directives

uwsgi_cache_valid 200 302 10m;
uwsgi_cache_valid 404 1m;

set 10 minutes of caching for responses with codes 200 and 302 and 1 minute
for responses with code 404.

If only caching time is specified

uwsgi_cache_valid 5m;

then only 200, 301, and 302 responses are cached.
In addition, the any parameter can be specified to cache any responses:

uwsgi_cache_valid 200 302 10m;
uwsgi_cache_valid 301 1h;
uwsgi_cache_valid any 1m;

Parameters of caching can also be set directly in the response header. This
has higher priority than setting of caching time using the directive.

• The X-Accel-Expires header field sets caching time of a response in
seconds. The zero value disables caching for a response. If the value
starts with the @ prefix, it sets an absolute time in seconds since Epoch,
up to which the response may be cached.

• If the header does not include the X-Accel-Expires field, parameters
of caching may be set in the header fields Expires or Cache-Control.

• If the header includes the Set-Cookie field, such a response will not
be cached.

• If the header includes the Vary field with the special value “*”, such a
response will not be cached (1.7.7). If the header includes the Vary field
with another value, such a response will be cached taking into account
the corresponding request header fields (1.7.7).

Processing of one or more of these response header fields can be disabled using
the uwsgi ignore headers directive.

uwsgi connect timeout

Syntax: uwsgi_connect_timeout time;

Default 60s

Context: http, server, location

Nginx, Inc. p.269 of 379

CHAPTER 2. HTTP SERVER MODULES 2.49. MODULE NGX HTTP UWSGI MODULE

Defines a timeout for establishing a connection with a uwsgi server. It
should be noted that this timeout cannot usually exceed 75 seconds.

uwsgi force ranges

Syntax: uwsgi_force_ranges on | off;

Default off

Context: http, server, location
This directive appeared in version 1.7.7.

Enables byte-range support for both cached and uncached responses from
the uwsgi server regardless of the Accept-Ranges field in these responses.

uwsgi hide header

Syntax: uwsgi_hide_header field;

Default —

Context: http, server, location

By default, nginx does not pass the header fields Status and
X-Accel-... from the response of a uwsgi server to a client. The
uwsgi_hide_header directive sets additional fields that will not be passed.
If, on the contrary, the passing of fields needs to be permitted, the uwsgi -
pass header directive can be used.

uwsgi ignore client abort

Syntax: uwsgi_ignore_client_abort on | off;

Default off

Context: http, server, location

Determines whether the connection with a uwsgi server should be closed
when a client closes the connection without waiting for a response.

uwsgi ignore headers

Syntax: uwsgi_ignore_headers field . . . ;

Default —

Context: http, server, location

Disables processing of certain response header fields from
the uwsgi server. The following fields can be ignored:
X-Accel-Redirect, X-Accel-Expires, X-Accel-Limit-Rate
(1.1.6), X-Accel-Buffering (1.1.6), X-Accel-Charset (1.1.6),
Expires, Cache-Control, Set-Cookie (0.8.44), and Vary (1.7.7).

If not disabled, processing of these header fields has the following effect:

• X-Accel-Expires, Expires, Cache-Control, Set-Cookie, and
Vary set the parameters of response caching;

• X-Accel-Redirect performs an internal redirect to the specified URI;

Nginx, Inc. p.270 of 379

CHAPTER 2. HTTP SERVER MODULES 2.49. MODULE NGX HTTP UWSGI MODULE

• X-Accel-Limit-Rate sets the rate limit for transmission of a
response to a client;

• X-Accel-Buffering enables or disables buffering of a response;

• X-Accel-Charset sets the desired charset of a response.

uwsgi intercept errors

Syntax: uwsgi_intercept_errors on | off;

Default off

Context: http, server, location

Determines whether a uwsgi server responses with codes greater than or
equal to 300 should be passed to a client or be intercepted and redirected to
nginx for processing with the error page directive.

uwsgi limit rate

Syntax: uwsgi_limit_rate rate;

Default 0

Context: http, server, location
This directive appeared in version 1.7.7.

Limits the speed of reading the response from the uwsgi server. The rate is
specified in bytes per second. The zero value disables rate limiting. The limit
is set per a request, and so if nginx simultaneously opens two connections to
the uwsgi server, the overall rate will be twice as much as the specified limit.
The limitation works only if buffering of responses from the uwsgi server is
enabled.

uwsgi max temp file size

Syntax: uwsgi_max_temp_file_size size;

Default 1024m

Context: http, server, location

When buffering of responses from the uwsgi server is enabled, and the whole
response does not fit into the buffers set by the uwsgi buffer size and uwsgi -
buffers directives, a part of the response can be saved to a temporary file.
This directive sets the maximum size of the temporary file. The size of data
written to the temporary file at a time is set by the uwsgi temp file write size
directive.

The zero value disables buffering of responses to temporary files.

This restriction does not apply to responses that will be cached or stored
on disk.

Nginx, Inc. p.271 of 379

CHAPTER 2. HTTP SERVER MODULES 2.49. MODULE NGX HTTP UWSGI MODULE

uwsgi modifier1

Syntax: uwsgi_modifier1 number;

Default 0

Context: http, server, location

Sets the value of the modifier1 field in the uwsgi packet header.

uwsgi modifier2

Syntax: uwsgi_modifier2 number;

Default 0

Context: http, server, location

Sets the value of the modifier2 field in the uwsgi packet header.

uwsgi next upstream

Syntax: uwsgi_next_upstream error | timeout | invalid_header |
http_500 | http_503 | http_403 | http_404 | non_idempotent |
off . . . ;

Default error timeout

Context: http, server, location

Specifies in which cases a request should be passed to the next server:

error
an error occurred while establishing a connection with the server, passing
a request to it, or reading the response header;

timeout
a timeout has occurred while establishing a connection with the server,
passing a request to it, or reading the response header;

invalid_header
a server returned an empty or invalid response;

http_500
a server returned a response with the code 500;

http_503
a server returned a response with the code 503;

http_403
a server returned a response with the code 403;

http_404
a server returned a response with the code 404;

non_idempotent
normally, requests with a non-idempotent method (POST, LOCK, PATCH)
are not passed to the next server if a request has been sent to an
upstream server (1.9.13); enabling this option explicitly allows retrying
such requests;

off
disables passing a request to the next server.

Nginx, Inc. p.272 of 379

http://uwsgi-docs.readthedocs.org/en/latest/Protocol.html#uwsgi-packet-header
http://uwsgi-docs.readthedocs.org/en/latest/Protocol.html#uwsgi-packet-header
http://tools.ietf.org/html/rfc7231#section-4.2.2

CHAPTER 2. HTTP SERVER MODULES 2.49. MODULE NGX HTTP UWSGI MODULE

One should bear in mind that passing a request to the next server is only
possible if nothing has been sent to a client yet. That is, if an error or timeout
occurs in the middle of the transferring of a response, fixing this is impossible.

The directive also defines what is considered an unsuccessful attempt
of communication with a server. The cases of error, timeout and
invalid_header are always considered unsuccessful attempts, even if they
are not specified in the directive. The cases of http_500 and http_503
are considered unsuccessful attempts only if they are specified in the directive.
The cases of http_403 and http_404 are never considered unsuccessful
attempts.

Passing a request to the next server can be limited by the number of tries
and by time.

uwsgi next upstream timeout

Syntax: uwsgi_next_upstream_timeout time;

Default 0

Context: http, server, location
This directive appeared in version 1.7.5.

Limits the time during which a request can be passed to the next server.
The 0 value turns off this limitation.

uwsgi next upstream tries

Syntax: uwsgi_next_upstream_tries number;

Default 0

Context: http, server, location
This directive appeared in version 1.7.5.

Limits the number of possible tries for passing a request to the next server.
The 0 value turns off this limitation.

uwsgi no cache

Syntax: uwsgi_no_cache string . . . ;

Default —

Context: http, server, location

Defines conditions under which the response will not be saved to a cache.
If at least one value of the string parameters is not empty and is not equal to
“0” then the response will not be saved:

uwsgi_no_cache $cookie_nocache $arg_nocache$arg_comment;
uwsgi_no_cache $http_pragma $http_authorization;

Can be used along with the uwsgi cache bypass directive.

Nginx, Inc. p.273 of 379

CHAPTER 2. HTTP SERVER MODULES 2.49. MODULE NGX HTTP UWSGI MODULE

uwsgi param

Syntax: uwsgi_param parameter value [if_not_empty];

Default —

Context: http, server, location

Sets a parameter that should be passed to the uwsgi server. The value can
contain text, variables, and their combination. These directives are inherited
from the previous level if and only if there are no uwsgi_param directives
defined on the current level.

Standard CGI environment variables should be provided as uwsgi headers,
see the uwsgi_params file provided in the distribution:

location / {
include uwsgi_params;
...

}

If the directive is specified with if_not_empty (1.1.11) then such a
parameter will not be passed to the server until its value is not empty:

uwsgi_param HTTPS $https if_not_empty;

uwsgi pass

Syntax: uwsgi_pass [protocol://]address;

Default —

Context: location, if in location

Sets the protocol and address of a uwsgi server. As a protocol, “uwsgi” or
“suwsgi” (secured uwsgi, uwsgi over SSL) can be specified. The address can
be specified as a domain name or IP address, and a port:

uwsgi_pass localhost:9000;
uwsgi_pass uwsgi://localhost:9000;
uwsgi_pass suwsgi://[2001:db8::1]:9090;

or as a UNIX-domain socket path:

uwsgi_pass unix:/tmp/uwsgi.socket;

If a domain name resolves to several addresses, all of them will be used
in a round-robin fashion. In addition, an address can be specified as a server
group.

Secured uwsgi protocol is supported since version 1.5.8.

uwsgi pass header

Syntax: uwsgi_pass_header field;

Default —

Context: http, server, location

Nginx, Inc. p.274 of 379

http://tools.ietf.org/html/rfc3875#section-4.1

CHAPTER 2. HTTP SERVER MODULES 2.49. MODULE NGX HTTP UWSGI MODULE

Permits passing otherwise disabled header fields from a uwsgi server to a
client.

uwsgi pass request body

Syntax: uwsgi_pass_request_body on | off;

Default on

Context: http, server, location

Indicates whether the original request body is passed to the uwsgi server.
See also the uwsgi pass request headers directive.

uwsgi pass request headers

Syntax: uwsgi_pass_request_headers on | off;

Default on

Context: http, server, location

Indicates whether the header fields of the original request are passed to the
uwsgi server. See also the uwsgi pass request body directive.

uwsgi read timeout

Syntax: uwsgi_read_timeout time;

Default 60s

Context: http, server, location

Defines a timeout for reading a response from the uwsgi server. The timeout
is set only between two successive read operations, not for the transmission of
the whole response. If the uwsgi server does not transmit anything within this
time, the connection is closed.

uwsgi request buffering

Syntax: uwsgi_request_buffering on | off;

Default on

Context: http, server, location
This directive appeared in version 1.7.11.

Enables or disables buffering of a client request body.
When buffering is enabled, the entire request body is read from the client

before sending the request to a uwsgi server.
When buffering is disabled, the request body is sent to the uwsgi server

immediately as it is received. In this case, the request cannot be passed to the
next server if nginx already started sending the request body.

When HTTP/1.1 chunked transfer encoding is used to send the original
request body, the request body will be buffered regardless of the directive
value.

Nginx, Inc. p.275 of 379

CHAPTER 2. HTTP SERVER MODULES 2.49. MODULE NGX HTTP UWSGI MODULE

uwsgi send timeout

Syntax: uwsgi_send_timeout time;

Default 60s

Context: http, server, location

Sets a timeout for transmitting a request to the uwsgi server. The timeout
is set only between two successive write operations, not for the transmission
of the whole request. If the uwsgi server does not receive anything within this
time, the connection is closed.

uwsgi ssl certificate

Syntax: uwsgi_ssl_certificate file;

Default —

Context: http, server, location
This directive appeared in version 1.7.8.

Specifies a file with the certificate in the PEM format used for
authentication to a secured uwsgi server.

uwsgi ssl certificate key

Syntax: uwsgi_ssl_certificate_key file;

Default —

Context: http, server, location
This directive appeared in version 1.7.8.

Specifies a file with the secret key in the PEM format used for
authentication to a secured uwsgi server.

The value engine:name:id can be specified instead of the file (1.7.9), which
loads a secret key with a specified id from the OpenSSL engine name.

uwsgi ssl ciphers

Syntax: uwsgi_ssl_ciphers ciphers;

Default DEFAULT

Context: http, server, location
This directive appeared in version 1.5.8.

Specifies the enabled ciphers for requests to a secured uwsgi server. The
ciphers are specified in the format understood by the OpenSSL library.

The full list can be viewed using the “openssl ciphers” command.

uwsgi ssl crl

Syntax: uwsgi_ssl_crl file;

Default —

Context: http, server, location
This directive appeared in version 1.7.0.

Nginx, Inc. p.276 of 379

CHAPTER 2. HTTP SERVER MODULES 2.49. MODULE NGX HTTP UWSGI MODULE

Specifies a file with revoked certificates (CRL) in the PEM format used to
verify the certificate of the secured uwsgi server.

uwsgi ssl name

Syntax: uwsgi_ssl_name name;

Default host from uwsgi_pass

Context: http, server, location
This directive appeared in version 1.7.0.

Allows overriding the server name used to verify the certificate of the
secured uwsgi server and to be passed through SNI when establishing a
connection with the secured uwsgi server.

By default, the host part from uwsgi pass is used.

uwsgi ssl password file

Syntax: uwsgi_ssl_password_file file;

Default —

Context: http, server, location
This directive appeared in version 1.7.8.

Specifies a file with passphrases for secret keys where each passphrase is
specified on a separate line. Passphrases are tried in turn when loading the
key.

uwsgi ssl protocols

Syntax: uwsgi_ssl_protocols [SSLv2] [SSLv3] [TLSv1] [TLSv1.1]

[TLSv1.2];

Default TLSv1 TLSv1.1 TLSv1.2

Context: http, server, location
This directive appeared in version 1.5.8.

Enables the specified protocols for requests to a secured uwsgi server.

uwsgi ssl server name

Syntax: uwsgi_ssl_server_name on | off;

Default off

Context: http, server, location
This directive appeared in version 1.7.0.

Enables or disables passing of the server name through TLS Server Name
Indication extension (SNI, RFC 6066) when establishing a connection with the
secured uwsgi server.

Nginx, Inc. p.277 of 379

http://en.wikipedia.org/wiki/Server_Name_Indication
http://en.wikipedia.org/wiki/Server_Name_Indication

CHAPTER 2. HTTP SERVER MODULES 2.49. MODULE NGX HTTP UWSGI MODULE

uwsgi ssl session reuse

Syntax: uwsgi_ssl_session_reuse on | off;

Default on

Context: http, server, location
This directive appeared in version 1.5.8.

Determines whether SSL sessions can be reused when
working with a secured uwsgi server. If the errors
“SSL3_GET_FINISHED:digest check failed” appear in the logs,
try disabling session reuse.

uwsgi ssl trusted certificate

Syntax: uwsgi_ssl_trusted_certificate file;

Default —

Context: http, server, location
This directive appeared in version 1.7.0.

Specifies a file with trusted CA certificates in the PEM format used to
verify the certificate of the secured uwsgi server.

uwsgi ssl verify

Syntax: uwsgi_ssl_verify on | off;

Default off

Context: http, server, location
This directive appeared in version 1.7.0.

Enables or disables verification of the secured uwsgi server certificate.

uwsgi ssl verify depth

Syntax: uwsgi_ssl_verify_depth number;

Default 1

Context: http, server, location
This directive appeared in version 1.7.0.

Sets the verification depth in the secured uwsgi server certificates chain.

uwsgi store

Syntax: uwsgi_store on | off | string;

Default off

Context: http, server, location

Enables saving of files to a disk. The on parameter saves files with paths
corresponding to the directives alias or root. The off parameter disables
saving of files. In addition, the file name can be set explicitly using the string
with variables:

Nginx, Inc. p.278 of 379

CHAPTER 2. HTTP SERVER MODULES 2.49. MODULE NGX HTTP UWSGI MODULE

uwsgi_store /data/www$original_uri;

The modification time of files is set according to the received
Last-Modified response header field. The response is first written to a
temporary file, and then the file is renamed. Starting from version 0.8.9,
temporary files and the persistent store can be put on different file systems.
However, be aware that in this case a file is copied across two file systems
instead of the cheap renaming operation. It is thus recommended that for any
given location both saved files and a directory holding temporary files, set by
the uwsgi temp path directive, are put on the same file system.

This directive can be used to create local copies of static unchangeable files,
e.g.:

location /images/ {
root /data/www;
error_page 404 = /fetch$uri;

}

location /fetch/ {
internal;

uwsgi_pass backend:9000;
...

uwsgi_store on;
uwsgi_store_access user:rw group:rw all:r;
uwsgi_temp_path /data/temp;

alias /data/www/;
}

uwsgi store access

Syntax: uwsgi_store_access users:permissions . . . ;

Default user:rw

Context: http, server, location

Sets access permissions for newly created files and directories, e.g.:

uwsgi_store_access user:rw group:rw all:r;

If any group or all access permissions are specified then user
permissions may be omitted:

uwsgi_store_access group:rw all:r;

uwsgi temp file write size

Syntax: uwsgi_temp_file_write_size size;

Default 8k|16k

Context: http, server, location

Nginx, Inc. p.279 of 379

CHAPTER 2. HTTP SERVER MODULES 2.49. MODULE NGX HTTP UWSGI MODULE

Limits the size of data written to a temporary file at a time, when buffering
of responses from the uwsgi server to temporary files is enabled. By default,
size is limited by two buffers set by the uwsgi buffer size and uwsgi buffers
directives. The maximum size of a temporary file is set by the uwsgi max -
temp file size directive.

uwsgi temp path

Syntax: uwsgi_temp_path path [level1 [level2 [level3]]];

Default uwsgi_temp

Context: http, server, location

Defines a directory for storing temporary files with data received from uwsgi
servers. Up to three-level subdirectory hierarchy can be used underneath the
specified directory. For example, in the following configuration

uwsgi_temp_path /spool/nginx/uwsgi_temp 1 2;

a temporary file might look like this:

/spool/nginx/uwsgi_temp/7/45/00000123457

See also the use_temp_path parameter of the uwsgi cache path
directive.

Nginx, Inc. p.280 of 379

CHAPTER 2. HTTP SERVER MODULES 2.50. MODULE NGX HTTP V2 MODULE

2.50 Module ngx http v2 module

2.50.1 Summary . 281
2.50.2 Known Issues . 281
2.50.3 Example Configuration 281
2.50.4 Directives . 282

http2 chunk size . 282
http2 body preread size 282
http2 idle timeout . 282
http2 max concurrent streams 282
http2 max field size . 282
http2 max header size 283
http2 recv buffer size . 283
http2 recv timeout . 283

2.50.5 Embedded Variables . 283

2.50.1 Summary

The ngx_http_v2_module module (1.9.5) provides support for HTTP/2
and supersedes the ngx http spdy module module.

This module is not built by default, it should be enabled with the
--with-http_v2_module configuration parameter.

2.50.2 Known Issues

The module is experimental, caveat emptor applies.
Before version 1.9.14, buffering of a client request body could not

be disabled regardless of proxy request buffering, fastcgi request buffering,
uwsgi request buffering, and scgi request buffering directive values.

2.50.3 Example Configuration

server {
listen 443 ssl http2;

ssl_certificate server.crt;
ssl_certificate_key server.key;

}

Note that accepting HTTP/2 connections over TLS requires the
“Application-Layer Protocol Negotiation” (ALPN) TLS extension support,
which is available only since OpenSSL version 1.0.2. Using the “Next Protocol
Negotiation” (NPN) TLS extension for this purpose (available since OpenSSL
version 1.0.1) is not guaranteed.

Also note that if the ssl prefer server ciphers directive is set to the value
“on”, the ciphers should be configured to comply with RFC 7540, Appendix A
black list and supported by clients.

Nginx, Inc. p.281 of 379

https://tools.ietf.org/html/rfc7540
http://www.openssl.org
https://tools.ietf.org/html/rfc7540#appendix-A

CHAPTER 2. HTTP SERVER MODULES 2.50. MODULE NGX HTTP V2 MODULE

2.50.4 Directives

http2 chunk size

Syntax: http2_chunk_size size;

Default 8k

Context: http, server, location

Sets the maximum size of chunks into which the response body is sliced. A
too low value results in higher overhead. A too high value impairs prioritization
due to HOL blocking.

http2 body preread size

Syntax: http2_body_preread_size size;

Default 64k

Context: http, server
This directive appeared in version 1.11.0.

Sets the size of the buffer per each request in which the request body may
be saved before it is started to be processed.

http2 idle timeout

Syntax: http2_idle_timeout time;

Default 3m

Context: http, server

Sets the timeout of inactivity after which the connection is closed.

http2 max concurrent streams

Syntax: http2_max_concurrent_streams number;

Default 128

Context: http, server

Sets the maximum number of concurrent HTTP/2 streams in a connection.

http2 max field size

Syntax: http2_max_field_size size;

Default 4k

Context: http, server

Limits the maximum size of an HPACK-compressed request header field.
The limit applies equally to both name and value. Note that if Huffman
encoding is applied, the actual size of decompressed name and value strings
may be larger. For most requests, the default limit should be enough.

Nginx, Inc. p.282 of 379

http://en.wikipedia.org/wiki/Head-of-line_blocking
http://tools.ietf.org/html/rfc7541

CHAPTER 2. HTTP SERVER MODULES 2.50. MODULE NGX HTTP V2 MODULE

http2 max header size

Syntax: http2_max_header_size size;

Default 16k

Context: http, server

Limits the maximum size of the entire request header list after HPACK
decompression. For most requests, the default limit should be enough.

http2 recv buffer size

Syntax: http2_recv_buffer_size size;

Default 256k

Context: http

Sets the size of the per worker input buffer.

http2 recv timeout

Syntax: http2_recv_timeout time;

Default 30s

Context: http, server

Sets the timeout for expecting more data from the client, after which the
connection is closed.

2.50.5 Embedded Variables

The ngx_http_v2_module module supports the following embedded
variables:

$http2
negotiated protocol identifier: “h2” for HTTP/2 over TLS, “h2c” for
HTTP/2 over cleartext TCP, or an empty string otherwise.

Nginx, Inc. p.283 of 379

http://tools.ietf.org/html/rfc7541

CHAPTER 2. HTTP SERVER MODULES 2.51. MODULE NGX HTTP XSLT MODULE

2.51 Module ngx http xslt module

2.51.1 Summary . 284
2.51.2 Example Configuration 284
2.51.3 Directives . 284

xml entities . 284
xslt last modified . 285
xslt param . 285
xslt string param . 285
xslt stylesheet . 285
xslt types . 286

2.51.1 Summary

The ngx_http_xslt_module (0.7.8+) is a filter that transforms XML
responses using one or more XSLT stylesheets.

This module is not built by default, it should be enabled with the
--with-http_xslt_module configuration parameter.

This module requires the libxml2 and libxslt libraries.

2.51.2 Example Configuration

location / {
xml_entities /site/dtd/entities.dtd;
xslt_stylesheet /site/xslt/one.xslt param=value;
xslt_stylesheet /site/xslt/two.xslt;

}

2.51.3 Directives

xml entities

Syntax: xml_entities path;

Default —

Context: http, server, location

Specifies the DTD file that declares character entities. This file is compiled
at the configuration stage. For technical reasons, the module is unable to
use the external subset declared in the processed XML, so it is ignored and a
specially defined file is used instead. This file should not describe the XML
structure. It is enough to declare just the required character entities, for
example:

<!ENTITY nbsp " ">

Nginx, Inc. p.284 of 379

http://xmlsoft.org
http://xmlsoft.org/XSLT/

CHAPTER 2. HTTP SERVER MODULES 2.51. MODULE NGX HTTP XSLT MODULE

xslt last modified

Syntax: xslt_last_modified on | off;

Default off

Context: http, server, location
This directive appeared in version 1.5.1.

Allows preserving the Last-Modified header field from the original
response during XSLT transformations to facilitate response caching.

By default, the header field is removed as contents of the response are
modified during transformations and may contain dynamically generated
elements or parts that are changed independently of the original response.

xslt param

Syntax: xslt_param parameter value;

Default —

Context: http, server, location
This directive appeared in version 1.1.18.

Defines the parameters for XSLT stylesheets. The value is treated as an
XPath expression. The value can contain variables. To pass a string value to
a stylesheet, the xslt string param directive can be used.

There could be several xslt_param directives. These directives are
inherited from the previous level if and only if there are no xslt_param
and xslt string param directives defined on the current level.

xslt string param

Syntax: xslt_string_param parameter value;

Default —

Context: http, server, location
This directive appeared in version 1.1.18.

Defines the string parameters for XSLT stylesheets. XPath expressions in
the value are not interpreted. The value can contain variables.

There could be several xslt_string_param directives. These directives
are inherited from the previous level if and only if there are no xslt param and
xslt_string_param directives defined on the current level.

xslt stylesheet

Syntax: xslt_stylesheet stylesheet [parameter=value . . .];

Default —

Context: location

Defines the XSLT stylesheet and its optional parameters. A stylesheet is
compiled at the configuration stage.

Parameters can either be specified separately, or grouped in a single line
using the “:” delimiter. If a parameter includes the “:” character, it should be

Nginx, Inc. p.285 of 379

CHAPTER 2. HTTP SERVER MODULES 2.51. MODULE NGX HTTP XSLT MODULE

escaped as “%3A”. Also, libxslt requires to enclose parameters that contain
non-alphanumeric characters into single or double quotes, for example:

param1=’http%3A//www.example.com’:param2=value2

The parameters description can contain variables, for example, the whole
line of parameters can be taken from a single variable:

location / {
xslt_stylesheet /site/xslt/one.xslt

$arg_xslt_params
param1=’$value1’:param2=value2
param3=value3;

}

It is possible to specify several stylesheets. They will be applied sequentially
in the specified order.

xslt types

Syntax: xslt_types mime-type . . . ;

Default text/xml

Context: http, server, location

Enables transformations in responses with the specified MIME types in
addition to “text/xml”. The special value “*” matches any MIME type
(0.8.29). If the transformation result is an HTML response, its MIME type is
changed to “text/html”.

Nginx, Inc. p.286 of 379

Chapter 3

Stream server modules

3.1 Module ngx stream core module

3.1.1 Summary . 287
3.1.2 Example Configuration 287
3.1.3 Directives . 288

listen . 288
preread buffer size . 290
preread timeout . 290
proxy protocol timeout 290
resolver . 290
resolver timeout . 291
server . 291
stream . 291
tcp nodelay . 292
variables hash bucket size 292
variables hash max size 292

3.1.4 Embedded Variables . 292

3.1.1 Summary

The ngx_stream_core_module module is available since version
1.9.0. This module is not built by default, it should be enabled with the
--with-stream configuration parameter.

3.1.2 Example Configuration

worker_processes auto;

error_log /var/log/nginx/error.log info;

events {
worker_connections 1024;

}

stream {
upstream backend {

287

CHAPTER 3. STREAM SERVER MODULES 3.1. MODULE NGX STREAM CORE MODULE

hash $remote_addr consistent;

server backend1.example.com:12345 weight=5;
server 127.0.0.1:12345 max_fails=3 fail_timeout=30s;
server unix:/tmp/backend3;

}

upstream dns {
server 192.168.0.1:53535;
server dns.example.com:53;

}

server {
listen 12345;
proxy_connect_timeout 1s;
proxy_timeout 3s;
proxy_pass backend;

}

server {
listen 127.0.0.1:53 udp;
proxy_responses 1;
proxy_timeout 20s;
proxy_pass dns;

}

server {
listen [::1]:12345;
proxy_pass unix:/tmp/stream.socket;

}
}

3.1.3 Directives

listen

Syntax: listen address:port [ssl] [udp] [proxy_protocol]

[backlog=number] [bind] [ipv6only=on|off] [reuseport]

[so_keepalive=on|off|[keepidle]:[keepintvl]:[keepcnt]];

Default —

Context: server

Sets the address and port for the socket on which the server will accept
connections. It is possible to specify just the port. The address can also be a
hostname, for example:

listen 127.0.0.1:12345;
listen *:12345;
listen 12345; # same as *:12345
listen localhost:12345;

IPv6 addresses are specified in square brackets:

listen [::1]:12345;
listen [::]:12345;

UNIX-domain sockets are specified with the “unix:” prefix:

listen unix:/var/run/nginx.sock;

Nginx, Inc. p.288 of 379

CHAPTER 3. STREAM SERVER MODULES 3.1. MODULE NGX STREAM CORE MODULE

The ssl parameter allows specifying that all connections accepted on this
port should work in SSL mode.

The udp parameter configures a listening socket for working with
datagrams (1.9.13).

The proxy_protocol parameter (1.11.4) allows specifying that all
connections accepted on this port should use the PROXY protocol.

The listen directive can have several additional parameters specific to
socket-related system calls.

backlog=number
sets the backlog parameter in the listen call that limits the
maximum length for the queue of pending connections (1.9.2). By
default, backlog is set to -1 on FreeBSD, DragonFly BSD, and Mac
OS X, and to 511 on other platforms.

bind
this parameter instructs to make a separate bind call for a given
address:port pair. The fact is that if there are several listen directives
with the same port but different addresses, and one of the listen
directives listens on all addresses for the given port (*:port), nginx will
bind only to *:port. It should be noted that the getsockname system
call will be made in this case to determine the address that accepted the
connection. If the ipv6only or so_keepalive parameters are used
then for a given address:port pair a separate bind call will always be
made.

ipv6only=on|off
this parameter determines (via the IPV6_V6ONLY socket option)
whether an IPv6 socket listening on a wildcard address [::] will
accept only IPv6 connections or both IPv6 and IPv4 connections. This
parameter is turned on by default. It can only be set once on start.

reuseport
this parameter (1.9.1) instructs to create an individual listening socket for
each worker process (using the SO_REUSEPORT socket option), allowing
a kernel to distribute incoming connections between worker processes.
This currently works only on Linux 3.9+ and DragonFly BSD.

Inappropriate use of this option may have its security implications.

so_keepalive=on|off|[keepidle]:[keepintvl]:[keepcnt]
this parameter configures the “TCP keepalive” behavior for the listening
socket. If this parameter is omitted then the operating system’s settings
will be in effect for the socket. If it is set to the value “on”, the
SO_KEEPALIVE option is turned on for the socket. If it is set to the
value “off”, the SO_KEEPALIVE option is turned off for the socket.
Some operating systems support setting of TCP keepalive parameters on
a per-socket basis using the TCP_KEEPIDLE, TCP_KEEPINTVL, and
TCP_KEEPCNT socket options. On such systems (currently, Linux 2.4+,
NetBSD 5+, and FreeBSD 9.0-STABLE), they can be configured using

Nginx, Inc. p.289 of 379

http://www.haproxy.org/download/1.5/doc/proxy-protocol.txt
http://man7.org/linux/man-pages/man7/socket.7.html

CHAPTER 3. STREAM SERVER MODULES 3.1. MODULE NGX STREAM CORE MODULE

the keepidle, keepintvl, and keepcnt parameters. One or two parameters
may be omitted, in which case the system default setting for the
corresponding socket option will be in effect. For example,

so_keepalive=30m::10

will set the idle timeout (TCP_KEEPIDLE) to 30 minutes, leave the probe
interval (TCP_KEEPINTVL) at its system default, and set the probes
count (TCP_KEEPCNT) to 10 probes.

Different servers must listen on different address:port pairs.

preread buffer size

Syntax: preread_buffer_size size;

Default 16k

Context: stream, server
This directive appeared in version 1.11.5.

Specifies a size of the preread buffer.

preread timeout

Syntax: preread_timeout timeout;

Default 30s

Context: stream, server
This directive appeared in version 1.11.5.

Specifies a timeout of the preread phase.

proxy protocol timeout

Syntax: proxy_protocol_timeout timeout;

Default 30s

Context: stream, server
This directive appeared in version 1.11.4.

Specifies a timeout for reading the PROXY protocol header to complete. If
no entire header is transmitted within this time, the connection is closed.

resolver

Syntax: resolver address . . . [valid=time] [ipv6=on|off];

Default —

Context: stream, server
This directive appeared in version 1.11.3.

Configures name servers used to resolve names of upstream servers into
addresses, for example:

resolver 127.0.0.1 [::1]:5353;

Nginx, Inc. p.290 of 379

CHAPTER 3. STREAM SERVER MODULES 3.1. MODULE NGX STREAM CORE MODULE

An address can be specified as a domain name or IP address, and an
optional port. If port is not specified, the port 53 is used. Name servers
are queried in a round-robin fashion.

By default, nginx will look up both IPv4 and IPv6 addresses while resolving.
If looking up of IPv6 addresses is not desired, the ipv6=off parameter can
be specified.

By default, nginx caches answers using the TTL value of a response. The
optional valid parameter allows overriding it:

resolver 127.0.0.1 [::1]:5353 valid=30s;

Before version 1.11.3, this directive was available as part of our
commercial subscription.

resolver timeout

Syntax: resolver_timeout time;

Default 30s

Context: stream, server
This directive appeared in version 1.11.3.

Sets a timeout for name resolution, for example:

resolver_timeout 5s;

Before version 1.11.3, this directive was available as part of our
commercial subscription.

server

Syntax: server { . . . }
Default —

Context: stream

Sets the configuration for a server.

stream

Syntax: stream { . . . }
Default —

Context: main

Provides the configuration file context in which the stream server directives
are specified.

Nginx, Inc. p.291 of 379

http://nginx.com/products/
http://nginx.com/products/

CHAPTER 3. STREAM SERVER MODULES 3.1. MODULE NGX STREAM CORE MODULE

tcp nodelay

Syntax: tcp_nodelay on | off;

Default on

Context: stream, server
This directive appeared in version 1.9.4.

Enables or disables the use of the TCP_NODELAY option. The option is
enabled for both client and proxied server connections.

variables hash bucket size

Syntax: variables_hash_bucket_size size;

Default 64

Context: stream
This directive appeared in version 1.11.2.

Sets the bucket size for the variables hash table. The details of setting up
hash tables are provided in a separate document.

variables hash max size

Syntax: variables_hash_max_size size;

Default 1024

Context: stream
This directive appeared in version 1.11.2.

Sets the maximum size of the variables hash table. The details of setting
up hash tables are provided in a separate document.

3.1.4 Embedded Variables

The ngx_stream_core_module module supports variables since 1.11.2.

$binary remote addr
client address in a binary form, value’s length is always 4 bytes for IPv4
addresses or 16 bytes for IPv6 addresses

$bytes received
number of bytes received from a client (1.11.4)

$bytes sent
number of bytes sent to a client

$connection
connection serial number

$hostname
host name

$msec
current time in seconds with the milliseconds resolution

$nginx version
nginx version

Nginx, Inc. p.292 of 379

CHAPTER 3. STREAM SERVER MODULES 3.1. MODULE NGX STREAM CORE MODULE

$pid
PID of the worker process

$protocol
protocol used to communicate with the client: TCP or UDP (1.11.4)

$proxy protocol addr
client address from the PROXY protocol header, or an empty string
otherwise (1.11.4)
The PROXY protocol must be previously enabled by setting the
proxy_protocol parameter in the listen directive.

$proxy protocol port
client port from the PROXY protocol header, or an empty string
otherwise (1.11.4)
The PROXY protocol must be previously enabled by setting the
proxy_protocol parameter in the listen directive.

$remote addr
client address

$remote port
client port

$server addr
an address of the server which accepted a connection
Computing a value of this variable usually requires one system call. To
avoid a system call, the listen directives must specify addresses and use
the bind parameter.

$server port
port of the server which accepted a connection

$session time
session duration in seconds with a milliseconds resolution (1.11.4);

$status
session status (1.11.4), can be one of the following:

200
session completed successfully

400
client data could not be parsed, for example, the PROXY protocol
header

403
access forbidden, for example, when access is limited for certain
client addresses

500
internal server error

502
bad gateway, for example, if an upstream server could not be
selected or reached.

503
service unavailable, for example, when access is limited by the
number of connections

Nginx, Inc. p.293 of 379

CHAPTER 3. STREAM SERVER MODULES 3.1. MODULE NGX STREAM CORE MODULE

$time iso8601
local time in the ISO 8601 standard format

$time local
local time in the Common Log Format

Nginx, Inc. p.294 of 379

CHAPTER 3. STREAM SERVER MODULES 3.2. MODULE NGX STREAM ACCESS MODULE

3.2 Module ngx stream access module

3.2.1 Summary . 295
3.2.2 Example Configuration 295
3.2.3 Directives . 295

allow . 295
deny . 295

3.2.1 Summary

The ngx_stream_access_module module (1.9.2) allows limiting
access to certain client addresses.

3.2.2 Example Configuration

server {
...
deny 192.168.1.1;
allow 192.168.1.0/24;
allow 10.1.1.0/16;
allow 2001:0db8::/32;
deny all;

}

The rules are checked in sequence until the first match is found. In
this example, access is allowed only for IPv4 networks 10.1.1.0/16 and
192.168.1.0/24 excluding the address 192.168.1.1, and for IPv6
network 2001:0db8::/32.

3.2.3 Directives

allow

Syntax: allow address | CIDR | unix: | all;

Default —

Context: stream, server

Allows access for the specified network or address. If the special value
unix: is specified, allows access for all UNIX-domain sockets.

deny

Syntax: deny address | CIDR | unix: | all;

Default —

Context: stream, server

Denies access for the specified network or address. If the special value
unix: is specified, denies access for all UNIX-domain sockets.

Nginx, Inc. p.295 of 379

CHAPTER 3. STREAM SERVER MODULES 3.3. MODULE NGX STREAM GEO MODULE

3.3 Module ngx stream geo module

3.3.1 Summary . 296
3.3.2 Example Configuration 296
3.3.3 Directives . 296

geo . 296

3.3.1 Summary

The ngx_stream_geo_module module (1.11.3) creates variables with
values depending on the client IP address.

3.3.2 Example Configuration

geo $geo {
default 0;

127.0.0.1 2;
192.168.1.0/24 1;
10.1.0.0/16 1;

::1 2;
2001:0db8::/32 1;

}

3.3.3 Directives

geo

Syntax: geo [$address] $variable { . . . }
Default —

Context: stream

Describes the dependency of values of the specified variable on the client
IP address. By default, the address is taken from the $remote addr variable,
but it can also be taken from another variable, for example:

geo $arg_remote_addr $geo {
...;

}

Since variables are evaluated only when used, the mere existence of even
a large number of declared “geo” variables does not cause any extra costs for
connection processing.

If the value of a variable does not represent a valid IP address then the
“255.255.255.255” address is used.

Addresses are specified either as prefixes in CIDR notation (including
individual addresses) or as ranges.

The following special parameters are also supported:

Nginx, Inc. p.296 of 379

CHAPTER 3. STREAM SERVER MODULES 3.3. MODULE NGX STREAM GEO MODULE

delete
deletes the specified network.

default
a value set to the variable if the client address does not match any of
the specified addresses. When addresses are specified in CIDR notation,
“0.0.0.0/0” and “::/0” can be used instead of default. When
default is not specified, the default value will be an empty string.

include
includes a file with addresses and values. There can be several inclusions.

ranges
indicates that addresses are specified as ranges. This parameter should
be the first. To speed up loading of a geo base, addresses should be put
in ascending order.

Example:

geo $country {
default ZZ;
include conf/geo.conf;
delete 127.0.0.0/16;

127.0.0.0/24 US;
127.0.0.1/32 RU;
10.1.0.0/16 RU;
192.168.1.0/24 UK;

}

The conf/geo.conf file could contain the following lines:

10.2.0.0/16 RU;
192.168.2.0/24 RU;

A value of the most specific match is used. For example, for the 127.0.0.1
address the value “RU” will be chosen, not “US”.

Example with ranges:

geo $country {
ranges;
default ZZ;
127.0.0.0-127.0.0.0 US;
127.0.0.1-127.0.0.1 RU;
127.0.0.1-127.0.0.255 US;
10.1.0.0-10.1.255.255 RU;
192.168.1.0-192.168.1.255 UK;

}

Nginx, Inc. p.297 of 379

CHAPTER 3. STREAM SERVER MODULES 3.4. MODULE NGX STREAM GEOIP MODULE

3.4 Module ngx stream geoip module

3.4.1 Summary . 298
3.4.2 Example Configuration 298
3.4.3 Directives . 298

geoip country . 298
geoip city . 299
geoip org . 300

3.4.1 Summary

The ngx_stream_geoip_module module (1.11.3) creates variables
with values depending on the client IP address, using the precompiled
MaxMind databases.

When using the databases with IPv6 support, IPv4 addresses are looked
up as IPv4-mapped IPv6 addresses.

This module is not built by default, it should be enabled with the
--with-stream_geoip_module configuration parameter.

This module requires the MaxMind GeoIP library.

3.4.2 Example Configuration

stream {
geoip_country GeoIP.dat;
geoip_city GeoLiteCity.dat;

map $geoip_city_continent_code $nearest_server {
default example.com;
EU eu.example.com;
NA na.example.com;
AS as.example.com;

}
...

}

3.4.3 Directives

geoip country

Syntax: geoip_country file;

Default —

Context: stream

Specifies a database used to determine the country depending on the client
IP address. The following variables are available when using this database:

$geoip country code
two-letter country code, for example, “RU”, “US”.

Nginx, Inc. p.298 of 379

http://www.maxmind.com
http://www.maxmind.com/app/c

CHAPTER 3. STREAM SERVER MODULES 3.4. MODULE NGX STREAM GEOIP MODULE

$geoip country code3
three-letter country code, for example, “RUS”, “USA”.

$geoip country name
country name, for example, “Russian Federation”,
“United States”.

geoip city

Syntax: geoip_city file;

Default —

Context: stream

Specifies a database used to determine the country, region, and city
depending on the client IP address. The following variables are available when
using this database:

$geoip area code
telephone area code (US only).

This variable may contain outdated information since the corresponding
database field is deprecated.

$geoip city continent code
two-letter continent code, for example, “EU”, “NA”.

$geoip city country code
two-letter country code, for example, “RU”, “US”.

$geoip city country code3
three-letter country code, for example, “RUS”, “USA”.

$geoip city country name
country name, for example, “Russian Federation”,
“United States”.

$geoip dma code
DMA region code in US (also known as “metro code”), according to the
geotargeting in Google AdWords API.

$geoip latitude
latitude.

$geoip longitude
longitude.

$geoip region
two-symbol country region code (region, territory, state, province, federal
land and the like), for example, “48”, “DC”.

$geoip region name
country region name (region, territory, state, province, federal land and
the like), for example, “Moscow City”, “District of Columbia”.

$geoip city
city name, for example, “Moscow”, “Washington”.

$geoip postal code
postal code.

Nginx, Inc. p.299 of 379

https://developers.google.com/adwords/api/docs/appendix/cities-DMAregions

CHAPTER 3. STREAM SERVER MODULES 3.4. MODULE NGX STREAM GEOIP MODULE

geoip org

Syntax: geoip_org file;

Default —

Context: stream

Specifies a database used to determine the organization depending on the
client IP address. The following variable is available when using this database:

$geoip org
organization name, for example, “The University of Melbourne”.

Nginx, Inc. p.300 of 379

CHAPTER 3. STREAM SERVER MODULES 3.5. MODULE NGX STREAM LIMIT CONN MODULE

3.5 Module ngx stream limit conn module

3.5.1 Summary . 301
3.5.2 Example Configuration 301
3.5.3 Directives . 301

limit conn . 301
limit conn log level . 302
limit conn zone . 302

3.5.1 Summary

The ngx_stream_limit_conn_module module (1.9.3) is used to limit
the number of connections per the defined key, in particular, the number of
connections from a single IP address.

3.5.2 Example Configuration

stream {
limit_conn_zone $binary_remote_addr zone=addr:10m;

...

server {

...

limit_conn addr 1;
limit_conn_log_level error;

}
}

3.5.3 Directives

limit conn

Syntax: limit_conn zone number;

Default —

Context: stream, server

Sets the shared memory zone and the maximum allowed number of
connections for a given key value. When this limit is exceeded, the server
will close the connection. For example, the directives

limit_conn_zone $binary_remote_addr zone=addr:10m;

server {
...
limit_conn addr 1;

}

allow only one connection per an IP address at a time.
When several limit_conn directives are specified, any configured limit

will apply.

Nginx, Inc. p.301 of 379

CHAPTER 3. STREAM SERVER MODULES 3.5. MODULE NGX STREAM LIMIT CONN MODULE

The directives are inherited from the previous level if and only if there are
no limit_conn directives on the current level.

limit conn log level

Syntax: limit_conn_log_level info | notice | warn | error;

Default error

Context: stream, server

Sets the desired logging level for cases when the server limits the number
of connections.

limit conn zone

Syntax: limit_conn_zone key zone=name:size;

Default —

Context: stream

Sets parameters for a shared memory zone that will keep states for various
keys. In particular, the state includes the current number of connections. The
key can contain text, variables, and their combinations (1.11.2). Connections
with an empty key value are not accounted. Usage example:

limit_conn_zone $binary_remote_addr zone=addr:10m;

Here, the key is a client IP address set by the $binary_remote_addr
variable. The size of $binary_remote_addr is 4 bytes for IPv4 addresses
or 16 bytes for IPv6 addresses. The stored state always occupies 32 or 64 bytes
on 32-bit platforms and 64 bytes on 64-bit platforms. One megabyte zone can
keep about 32 thousand 32-byte states or about 16 thousand 64-byte states.
If the zone storage is exhausted, the server will close the connection.

Nginx, Inc. p.302 of 379

CHAPTER 3. STREAM SERVER MODULES 3.6. MODULE NGX STREAM LOG MODULE

3.6 Module ngx stream log module

3.6.1 Summary . 303
3.6.2 Example Configuration 303
3.6.3 Directives . 303

access log . 303
log format . 304
open log file cache . 304

3.6.1 Summary

The ngx_stream_log_module module (1.11.4) writes session logs in
the specified format.

3.6.2 Example Configuration

log_format basic ’$remote_addr [$time_local] ’
’$protocol $status $bytes_sent $bytes_received ’
’$session_time’;

access_log /spool/logs/nginx-access.log basic buffer=32k;

3.6.3 Directives

access log

Syntax: access_log path format [buffer=size] [gzip[=level]]

[flush=time] [if=condition];

Syntax: access_log off;

Default off

Context: stream, server

Sets the path, format, and configuration for a buffered log write. Several
logs can be specified on the same level. Logging to syslog can be configured
by specifying the “syslog:” prefix in the first parameter. The special value
off cancels all access_log directives on the current level.

If either the buffer or gzip parameter is used, writes to log will be
buffered.

The buffer size must not exceed the size of an atomic write to a disk file.
For FreeBSD this size is unlimited.

When buffering is enabled, the data will be written to the file:

• if the next log line does not fit into the buffer;

• if the buffered data is older than specified by the flush parameter;

• when a worker process is re-opening log files or is shutting down.

Nginx, Inc. p.303 of 379

http://nginx.org/en/docs/control.html

CHAPTER 3. STREAM SERVER MODULES 3.6. MODULE NGX STREAM LOG MODULE

If the gzip parameter is used, then the buffered data will be compressed
before writing to the file. The compression level can be set between 1 (fastest,
less compression) and 9 (slowest, best compression). By default, the buffer
size is equal to 64K bytes, and the compression level is set to 1. Since the data
is compressed in atomic blocks, the log file can be decompressed or read by
“zcat” at any time.

Example:

access_log /path/to/log.gz basic gzip flush=5m;

For gzip compression to work, nginx must be built with the zlib library.

The file path can contain variables, but such logs have some constraints:

• the user whose credentials are used by worker processes should have
permissions to create files in a directory with such logs;

• buffered writes do not work;

• the file is opened and closed for each log write. However, since the
descriptors of frequently used files can be stored in a cache, writing to
the old file can continue during the time specified by the open log file -
cache directive’s valid parameter

The if parameter enables conditional logging. A session will not be logged
if the condition evaluates to “0” or an empty string.

log format

Syntax: log_format name string . . . ;

Default —

Context: stream

Specifies the log format, for example:

log_format proxy ’$remote_addr [$time_local] ’
’$protocol $status $bytes_sent $bytes_received ’
’$session_time "$upstream_addr" ’
’"$upstream_bytes_sent" "$upstream_bytes_received" "

$upstream_connect_time"’;

open log file cache

Syntax: open_log_file_cache max=N [inactive=time] [min_uses=N]

[valid=time];

Syntax: open_log_file_cache off;

Default off

Context: stream, server

Defines a cache that stores the file descriptors of frequently used logs whose
names contain variables. The directive has the following parameters:

Nginx, Inc. p.304 of 379

CHAPTER 3. STREAM SERVER MODULES 3.6. MODULE NGX STREAM LOG MODULE

max
sets the maximum number of descriptors in a cache; if the cache becomes
full the least recently used (LRU) descriptors are closed

inactive
sets the time after which the cached descriptor is closed if there were no
access during this time; by default, 10 seconds

min_uses
sets the minimum number of file uses during the time defined by the
inactive parameter to let the descriptor stay open in a cache; by
default, 1

valid
sets the time after which it should be checked that the file still exists
with the same name; by default, 60 seconds

off
disables caching

Usage example:

open_log_file_cache max=1000 inactive=20s valid=1m min_uses=2;

Nginx, Inc. p.305 of 379

CHAPTER 3. STREAM SERVER MODULES 3.7. MODULE NGX STREAM MAP MODULE

3.7 Module ngx stream map module

3.7.1 Summary . 306
3.7.2 Example Configuration 306
3.7.3 Directives . 306

map . 306
map hash bucket size . 307
map hash max size . 308

3.7.1 Summary

The ngx_stream_map_module module (1.11.2) creates variables whose
values depend on values of other variables.

3.7.2 Example Configuration

map $remote_addr $limit {
127.0.0.1 "";
default $binary_remote_addr;

}

limit_conn_zone $limit zone=addr:10m;
limit_conn addr 1;

3.7.3 Directives

map

Syntax: map string $variable { . . . }
Default —

Context: stream

Creates a new variable whose value depends on values of one or more of
the source variables specified in the first parameter.

Since variables are evaluated only when they are used, the mere
declaration even of a large number of “map” variables does not add any extra
costs to connection processing.

Parameters inside the map block specify a mapping between source and
resulting values.

Source values are specified as strings or regular expressions.
Strings are matched ignoring the case.
A regular expression should either start from the “~” symbol for a case-

sensitive matching, or from the “~*” symbols for case-insensitive matching. A
regular expression can contain named and positional captures that can later
be used in other directives along with the resulting variable.

Nginx, Inc. p.306 of 379

CHAPTER 3. STREAM SERVER MODULES 3.7. MODULE NGX STREAM MAP MODULE

If a source value matches one of the names of special parameters described
below, it should be prefixed with the “\” symbol.

The resulting value can contain text, variable, and their combination.
The directive also supports three special parameters:

default value
sets the resulting value if the source value matches none of the specified
variants. When default is not specified, the default resulting value
will be an empty string.

hostnames
indicates that source values can be hostnames with a prefix or suffix
mask:

*.example.com 1;
example.* 1;

The following two records

example.com 1;

*.example.com 1;

can be combined:

.example.com 1;

This parameter should be specified before the list of values.

include file
includes a file with values. There can be several inclusions.

If the source value matches more than one of the specified variants, e.g.
both a mask and a regular expression match, the first matching variant will be
chosen, in the following order of priority:

1. string value without a mask

2. longest string value with a prefix mask, e.g. “*.example.com”

3. longest string value with a suffix mask, e.g. “mail.*”

4. first matching regular expression (in order of appearance in a
configuration file)

5. default value

map hash bucket size

Syntax: map_hash_bucket_size size;

Default 32|64|128

Context: stream

Sets the bucket size for the map variables hash tables. Default value
depends on the processor’s cache line size. The details of setting up hash
tables are provided in a separate document.

Nginx, Inc. p.307 of 379

CHAPTER 3. STREAM SERVER MODULES 3.7. MODULE NGX STREAM MAP MODULE

map hash max size

Syntax: map_hash_max_size size;

Default 2048

Context: stream

Sets the maximum size of the map variables hash tables. The details of
setting up hash tables are provided in a separate document.

Nginx, Inc. p.308 of 379

CHAPTER 3. STREAM SERVER MODULES 3.8. MODULE NGX STREAM PROXY MODULE

3.8 Module ngx stream proxy module

3.8.1 Summary . 309
3.8.2 Example Configuration 309
3.8.3 Directives . 310

proxy bind . 310
proxy buffer size . 310
proxy connect timeout 310
proxy download rate . 311
proxy next upstream . 311
proxy next upstream timeout 311
proxy next upstream tries 311
proxy pass . 311
proxy protocol . 312
proxy responses . 312
proxy ssl . 312
proxy ssl certificate . 312
proxy ssl certificate key 313
proxy ssl ciphers . 313
proxy ssl crl . 313
proxy ssl name . 313
proxy ssl password file 313
proxy ssl server name 314
proxy ssl session reuse 314
proxy ssl protocols . 314
proxy ssl trusted certificate 314
proxy ssl verify . 314
proxy ssl verify depth 315
proxy timeout . 315
proxy upload rate . 315

3.8.1 Summary

The ngx_stream_proxy_module module (1.9.0) allows proxying data
streams over TCP, UDP (1.9.13), and UNIX-domain sockets.

3.8.2 Example Configuration

server {
listen 127.0.0.1:12345;
proxy_pass 127.0.0.1:8080;

}

server {
listen 12345;
proxy_connect_timeout 1s;
proxy_timeout 1m;
proxy_pass example.com:12345;

}

Nginx, Inc. p.309 of 379

CHAPTER 3. STREAM SERVER MODULES 3.8. MODULE NGX STREAM PROXY MODULE

server {
listen 53 udp;
proxy_responses 1;
proxy_timeout 20s;
proxy_pass dns.example.com:53;

}

server {
listen [::1]:12345;
proxy_pass unix:/tmp/stream.socket;

}

3.8.3 Directives

proxy bind

Syntax: proxy_bind address [transparent] | off;

Default —

Context: stream, server
This directive appeared in version 1.9.2.

Makes outgoing connections to a proxied server originate from the specified
local IP address. Parameter value can contain variables (1.11.2). The special
value off cancels the effect of the proxy_bind directive inherited from the
previous configuration level, which allows the system to auto-assign the local
IP address.

The transparent parameter (1.11.0) allows outgoing connections to a
proxied server originate from a non-local IP address, for example, from a real
IP address of a client:

proxy_bind $remote_addr transparent;

In order for this parameter to work, it is necessary to run nginx worker
processes with the superuser privileges and configure kernel routing table to
intercept network traffic from the proxied server.

proxy buffer size

Syntax: proxy_buffer_size size;

Default 16k

Context: stream, server
This directive appeared in version 1.9.4.

Sets the size of the buffer used for reading data from the proxied server.
Also sets the size of the buffer used for reading data from the client.

proxy connect timeout

Syntax: proxy_connect_timeout time;

Default 60s

Context: stream, server

Defines a timeout for establishing a connection with a proxied server.

Nginx, Inc. p.310 of 379

CHAPTER 3. STREAM SERVER MODULES 3.8. MODULE NGX STREAM PROXY MODULE

proxy download rate

Syntax: proxy_download_rate rate;

Default 0

Context: stream, server
This directive appeared in version 1.9.3.

Limits the speed of reading the data from the proxied server. The rate is
specified in bytes per second. The zero value disables rate limiting. The limit
is set per a connection, so if nginx simultaneously opens two connections to
the proxied server, the overall rate will be twice as much as the specified limit.

proxy next upstream

Syntax: proxy_next_upstream on | off;

Default on

Context: stream, server

When a connection to the proxied server cannot be established, determines
whether a client connection will be passed to the next server.

Passing a connection to the next server can be limited by the number of
tries and by time.

proxy next upstream timeout

Syntax: proxy_next_upstream_timeout time;

Default 0

Context: stream, server

Limits the time allowed to pass a connection to the next server. The 0
value turns off this limitation.

proxy next upstream tries

Syntax: proxy_next_upstream_tries number;

Default 0

Context: stream, server

Limits the number of possible tries for passing a connection to the next
server. The 0 value turns off this limitation.

proxy pass

Syntax: proxy_pass address;

Default —

Context: server

Sets the address of a proxied server. The address can be specified as a
domain name or IP address, and a port:

proxy_pass localhost:12345;

Nginx, Inc. p.311 of 379

CHAPTER 3. STREAM SERVER MODULES 3.8. MODULE NGX STREAM PROXY MODULE

or as a UNIX-domain socket path:

proxy_pass unix:/tmp/stream.socket;

If a domain name resolves to several addresses, all of them will be used
in a round-robin fashion. In addition, an address can be specified as a server
group.

The address can also be specified using variables (1.11.3):

proxy_pass $upstream;

In this case, the server name is searched among the described server groups,
and, if not found, is determined using a resolver.

proxy protocol

Syntax: proxy_protocol on | off;

Default off

Context: stream, server
This directive appeared in version 1.9.2.

Enables the PROXY protocol for connections to a proxied server.

proxy responses

Syntax: proxy_responses number;

Default —

Context: stream, server
This directive appeared in version 1.9.13.

Sets the number of datagrams expected from the proxied server in response
to the client request if the UDP protocol is used. By default, the number of
datagrams is not limited: the response datagrams will be sent until the proxy -
timeout value expires.

proxy ssl

Syntax: proxy_ssl on | off;

Default off

Context: stream, server

Enables the SSL/TLS protocol for connections to a proxied server.

proxy ssl certificate

Syntax: proxy_ssl_certificate file;

Default —

Context: stream, server

Specifies a file with the certificate in the PEM format used for
authentication to a proxied server.

Nginx, Inc. p.312 of 379

http://www.haproxy.org/download/1.5/doc/proxy-protocol.txt

CHAPTER 3. STREAM SERVER MODULES 3.8. MODULE NGX STREAM PROXY MODULE

proxy ssl certificate key

Syntax: proxy_ssl_certificate_key file;

Default —

Context: stream, server

Specifies a file with the secret key in the PEM format used for
authentication to a proxied server.

proxy ssl ciphers

Syntax: proxy_ssl_ciphers ciphers;

Default DEFAULT

Context: stream, server

Specifies the enabled ciphers for connections to a proxied server. The
ciphers are specified in the format understood by the OpenSSL library.

The full list can be viewed using the “openssl ciphers” command.

proxy ssl crl

Syntax: proxy_ssl_crl file;

Default —

Context: stream, server

Specifies a file with revoked certificates (CRL) in the PEM format used to
verify the certificate of the proxied server.

proxy ssl name

Syntax: proxy_ssl_name name;

Default host from proxy_pass

Context: stream, server

Allows overriding the server name used to verify the certificate of the
proxied server and to be passed through SNI when establishing a connection
with the proxied server. The server name can also be specified using variables
(1.11.3).

By default, the host part of the proxy pass address is used.

proxy ssl password file

Syntax: proxy_ssl_password_file file;

Default —

Context: stream, server

Specifies a file with passphrases for secret keys where each passphrase is
specified on a separate line. Passphrases are tried in turn when loading the
key.

Nginx, Inc. p.313 of 379

CHAPTER 3. STREAM SERVER MODULES 3.8. MODULE NGX STREAM PROXY MODULE

proxy ssl server name

Syntax: proxy_ssl_server_name on | off;

Default off

Context: stream, server

Enables or disables passing of the server name through TLS Server Name
Indication extension (SNI, RFC 6066) when establishing a connection with the
proxied server.

proxy ssl session reuse

Syntax: proxy_ssl_session_reuse on | off;

Default on

Context: stream, server

Determines whether SSL sessions can be reused
when working with the proxied server. If the errors
“SSL3_GET_FINISHED:digest check failed” appear in the logs,
try disabling session reuse.

proxy ssl protocols

Syntax: proxy_ssl_protocols [SSLv2] [SSLv3] [TLSv1] [TLSv1.1]

[TLSv1.2];

Default TLSv1 TLSv1.1 TLSv1.2

Context: stream, server

Enables the specified protocols for connections to a proxied server.

proxy ssl trusted certificate

Syntax: proxy_ssl_trusted_certificate file;

Default —

Context: stream, server

Specifies a file with trusted CA certificates in the PEM format used to
verify the certificate of the proxied server.

proxy ssl verify

Syntax: proxy_ssl_verify on | off;

Default off

Context: stream, server

Enables or disables verification of the proxied server certificate.

Nginx, Inc. p.314 of 379

http://en.wikipedia.org/wiki/Server_Name_Indication
http://en.wikipedia.org/wiki/Server_Name_Indication

CHAPTER 3. STREAM SERVER MODULES 3.8. MODULE NGX STREAM PROXY MODULE

proxy ssl verify depth

Syntax: proxy_ssl_verify_depth number;

Default 1

Context: stream, server

Sets the verification depth in the proxied server certificates chain.

proxy timeout

Syntax: proxy_timeout timeout;

Default 10m

Context: stream, server

Sets the timeout between two successive read or write operations on client
or proxied server connections. If no data is transmitted within this time, the
connection is closed.

proxy upload rate

Syntax: proxy_upload_rate rate;

Default 0

Context: stream, server
This directive appeared in version 1.9.3.

Limits the speed of reading the data from the client. The rate is specified
in bytes per second. The zero value disables rate limiting. The limit is set per
a connection, so if the client simultaneously opens two connections, the overall
rate will be twice as much as the specified limit.

Nginx, Inc. p.315 of 379

CHAPTER 3. STREAM SERVER MODULES 3.9. MODULE NGX STREAM REALIP MODULE

3.9 Module ngx stream realip module

3.9.1 Summary . 316
3.9.2 Example Configuration 316
3.9.3 Directives . 316

set real ip from . 316
3.9.4 Embedded Variables . 316

3.9.1 Summary

The ngx_stream_realip_module module is used to change the client
address and port to the ones sent in the PROXY protocol header (1.11.4). The
PROXY protocol must be previously enabled by setting the proxy protocol
parameter in the listen directive.

This module is not built by default, it should be enabled with the
--with-stream_realip_module configuration parameter.

3.9.2 Example Configuration

listen 12345 proxy_protocol;

set_real_ip_from 192.168.1.0/24;
set_real_ip_from 192.168.2.1;
set_real_ip_from 2001:0db8::/32;

3.9.3 Directives

set real ip from

Syntax: set_real_ip_from address | CIDR | unix:;

Default —

Context: stream, server

Defines trusted addresses that are known to send correct replacement
addresses. If the special value unix: is specified, all UNIX-domain sockets
will be trusted.

3.9.4 Embedded Variables

$realip remote addr
keeps the original client address

$realip remote port
keeps the original client port

Nginx, Inc. p.316 of 379

CHAPTER 3. STREAM SERVER MODULES 3.10. MODULE NGX STREAM RETURN MODULE

3.10 Module ngx stream return module

3.10.1 Summary . 317
3.10.2 Example Configuration 317
3.10.3 Directives . 317

return . 317

3.10.1 Summary

The ngx_stream_return_module module (1.11.2) allows sending a
specified value to the client and then closing the connection.

3.10.2 Example Configuration

server {
listen 12345;
return $time_iso8601;

}

3.10.3 Directives

return

Syntax: return value;

Default —

Context: server

Specifies a value to send to the client. The value can contain text, variables,
and their combination.

Nginx, Inc. p.317 of 379

CHAPTER 3. STREAM SERVER MODULES 3.11. MODULE NGX STREAM SPLIT CLIENTS MODULE

3.11 Module ngx stream split clients module

3.11.1 Summary . 318
3.11.2 Example Configuration 318
3.11.3 Directives . 318

split clients . 318

3.11.1 Summary

The ngx_stream_split_clients_module module (1.11.3) creates
variables suitable for A/B testing, also known as split testing.

3.11.2 Example Configuration

stream {
...
split_clients "${remote_addr}AAA" $upstream {

0.5% feature_test1;
2.0% feature_test2;

* production;
}

server {
...
proxy_pass $upstream;

}
}

3.11.3 Directives

split clients

Syntax: split_clients string $variable { . . . }
Default —

Context: stream

Creates a variable for A/B testing, for example:

split_clients "${remote_addr}AAA" $variant {
0.5% .one;
2.0% .two;

* "";
}

The value of the original string is hashed using MurmurHash2. In the
example given, hash values from 0 to 21474835 (0.5%) correspond to the value
".one" of the $variant variable, hash values from 21474836 to 107374180
(2%) correspond to the value ".two", and hash values from 107374181 to
4294967295 correspond to the value "" (an empty string).

Nginx, Inc. p.318 of 379

CHAPTER 3. STREAM SERVER MODULES 3.12. MODULE NGX STREAM SSL MODULE

3.12 Module ngx stream ssl module

3.12.1 Summary . 319
3.12.2 Example Configuration 319
3.12.3 Directives . 320

ssl certificate . 320
ssl certificate key . 320
ssl ciphers . 320
ssl dhparam . 321
ssl ecdh curve . 321
ssl handshake timeout 321
ssl password file . 321
ssl prefer server ciphers 322
ssl protocols . 322
ssl session cache . 322
ssl session ticket key . 323
ssl session tickets . 323
ssl session timeout . 323

3.12.4 Embedded Variables . 324

3.12.1 Summary

The ngx_stream_ssl_module module (1.9.0) provides the necessary
support for a stream proxy server to work with the SSL/TLS protocol.
This module is not built by default, it should be enabled with the
--with-stream_ssl_module configuration parameter.

3.12.2 Example Configuration

To reduce the processor load, it is recommended to

• set the number of worker processes equal to the number of processors,

• enable the shared session cache,

• disable the built-in session cache,

• and possibly increase the session lifetime (by default, 5 minutes):

worker_processes auto;

stream {

...

server {
listen 12345 ssl;

ssl_protocols TLSv1 TLSv1.1 TLSv1.2;
ssl_ciphers AES128-SHA:AES256-SHA:RC4-SHA:DES-CBC3-SHA:RC4-MD5;
ssl_certificate /usr/local/nginx/conf/cert.pem;
ssl_certificate_key /usr/local/nginx/conf/cert.key;

Nginx, Inc. p.319 of 379

CHAPTER 3. STREAM SERVER MODULES 3.12. MODULE NGX STREAM SSL MODULE

ssl_session_cache shared:SSL:10m;
ssl_session_timeout 10m;

...
}

3.12.3 Directives

ssl certificate

Syntax: ssl_certificate file;

Default —

Context: stream, server

Specifies a file with the certificate in the PEM format for the given server. If
intermediate certificates should be specified in addition to a primary certificate,
they should be specified in the same file in the following order: the primary
certificate comes first, then the intermediate certificates. A secret key in the
PEM format may be placed in the same file.

Since version 1.11.0, this directive can be specified multiple times to load
certificates of different types, for example, RSA and ECDSA:

server {
listen 12345 ssl;

ssl_certificate example.com.rsa.crt;
ssl_certificate_key example.com.rsa.key;

ssl_certificate example.com.ecdsa.crt;
ssl_certificate_key example.com.ecdsa.key;

...
}

Only OpenSSL 1.0.2 or higher supports separate certificate chains for
different certificates. With older versions, only one certificate chain can be
used.

ssl certificate key

Syntax: ssl_certificate_key file;

Default —

Context: stream, server

Specifies a file with the secret key in the PEM format for the given server.
The value engine:name:id can be specified instead of the file, which loads

a secret key with a specified id from the OpenSSL engine name.

ssl ciphers

Syntax: ssl_ciphers ciphers;

Default HIGH:!aNULL:!MD5

Context: stream, server

Nginx, Inc. p.320 of 379

CHAPTER 3. STREAM SERVER MODULES 3.12. MODULE NGX STREAM SSL MODULE

Specifies the enabled ciphers. The ciphers are specified in the format
understood by the OpenSSL library, for example:

ssl_ciphers ALL:!aNULL:!EXPORT56:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP;

The full list can be viewed using the “openssl ciphers” command.

ssl dhparam

Syntax: ssl_dhparam file;

Default —

Context: stream, server

Specifies a file with DH parameters for DHE ciphers.

ssl ecdh curve

Syntax: ssl_ecdh_curve curve;

Default auto

Context: stream, server

Specifies a curve for ECDHE ciphers.
When using OpenSSL 1.0.2 or higher, it is possible to specify multiple

curves (1.11.0), for example:

ssl_ecdh_curve prime256v1:secp384r1;

The special value auto (1.11.0) instructs nginx to use a list built into the
OpenSSL library when using OpenSSL 1.0.2 or higher, or prime256v1 with
older versions.

Prior to version 1.11.0, the prime256v1 curve was used by default.

ssl handshake timeout

Syntax: ssl_handshake_timeout time;

Default 60s

Context: stream, server

Specifies a timeout for the SSL handshake to complete.

ssl password file

Syntax: ssl_password_file file;

Default —

Context: stream, server

Specifies a file with passphrases for secret keys where each passphrase is
specified on a separate line. Passphrases are tried in turn when loading the
key.

Example:

Nginx, Inc. p.321 of 379

CHAPTER 3. STREAM SERVER MODULES 3.12. MODULE NGX STREAM SSL MODULE

stream {
ssl_password_file /etc/keys/global.pass;
...

server {
listen 127.0.0.1:12345;
ssl_certificate_key /etc/keys/first.key;

}

server {
listen 127.0.0.1:12346;

named pipe can also be used instead of a file
ssl_password_file /etc/keys/fifo;
ssl_certificate_key /etc/keys/second.key;

}
}

ssl prefer server ciphers

Syntax: ssl_prefer_server_ciphers on | off;

Default off

Context: stream, server

Specifies that server ciphers should be preferred over client ciphers when
the SSLv3 and TLS protocols are used.

ssl protocols

Syntax: ssl_protocols [SSLv2] [SSLv3] [TLSv1] [TLSv1.1] [TLSv1.2];

Default TLSv1 TLSv1.1 TLSv1.2

Context: stream, server

Enables the specified protocols. The TLSv1.1 and TLSv1.2 parameters
work only when the OpenSSL library of version 1.0.1 or higher is used.

ssl session cache

Syntax: ssl_session_cache off | none | [builtin[:size]]

[shared:name:size];

Default none

Context: stream, server

Sets the types and sizes of caches that store session parameters. A cache
can be of any of the following types:

off
the use of a session cache is strictly prohibited: nginx explicitly tells a
client that sessions may not be reused.

none
the use of a session cache is gently disallowed: nginx tells a client that
sessions may be reused, but does not actually store session parameters
in the cache.

Nginx, Inc. p.322 of 379

CHAPTER 3. STREAM SERVER MODULES 3.12. MODULE NGX STREAM SSL MODULE

builtin
a cache built in OpenSSL; used by one worker process only. The cache
size is specified in sessions. If size is not given, it is equal to 20480
sessions. Use of the built-in cache can cause memory fragmentation.

shared
a cache shared between all worker processes. The cache size is specified
in bytes; one megabyte can store about 4000 sessions. Each shared cache
should have an arbitrary name. A cache with the same name can be used
in several servers.

Both cache types can be used simultaneously, for example:

ssl_session_cache builtin:1000 shared:SSL:10m;

but using only shared cache without the built-in cache should be more
efficient.

ssl session ticket key

Syntax: ssl_session_ticket_key file;

Default —

Context: stream, server

Sets a file with the secret key used to encrypt and decrypt TLS session
tickets. The directive is necessary if the same key has to be shared between
multiple servers. By default, a randomly generated key is used.

If several keys are specified, only the first key is used to encrypt TLS session
tickets. This allows configuring key rotation, for example:

ssl_session_ticket_key current.key;
ssl_session_ticket_key previous.key;

The file must contain 48 bytes of random data and can be created using
the following command:

openssl rand 48 > ticket.key

ssl session tickets

Syntax: ssl_session_tickets on | off;

Default on

Context: stream, server

Enables or disables session resumption through TLS session tickets.

ssl session timeout

Syntax: ssl_session_timeout time;

Default 5m

Context: stream, server

Nginx, Inc. p.323 of 379

http://tools.ietf.org/html/rfc5077

CHAPTER 3. STREAM SERVER MODULES 3.12. MODULE NGX STREAM SSL MODULE

Specifies a time during which a client may reuse the session parameters.

3.12.4 Embedded Variables

The ngx_stream_ssl_module module supports variables since 1.11.2.

$ssl cipher
returns the string of ciphers used for an established SSL connection;

$ssl protocol
returns the protocol of an established SSL connection;

$ssl server name
returns the server name requested through SNI;

$ssl session id
returns the session identifier of an established SSL connection;

$ssl session reused
returns “r” if an SSL session was reused, or “.” otherwise.

Nginx, Inc. p.324 of 379

http://en.wikipedia.org/wiki/Server_Name_Indication

CHAPTER 3. STREAM SERVER MODULES 3.13. MODULE NGX STREAM SSL PREREAD MODULE

3.13 Module ngx stream ssl preread module

3.13.1 Summary . 325
3.13.2 Example Configuration 325
3.13.3 Directives . 325

ssl preread . 325
3.13.4 Embedded Variables . 325

3.13.1 Summary

The ngx_stream_ssl_preread_module module (1.11.5) allows ex-
tracting information from the ClientHello message without terminat-
ing SSL/TLS, for example, the sever name requested through SNI.
This module is not built by default, it should be enabled with the
--with-stream_ssl_preread_module configuration parameter.

3.13.2 Example Configuration

map $ssl_preread_server_name $name {
backend.example.com backend;
default backend2;

}

upstream backend {
server 192.168.0.1:12345;
server 192.168.0.2:12345;

}

upstream backend2 {
server 192.168.0.3:12345;
server 192.168.0.4:12345;

}

server {
listen 12346;
proxy_pass $name;
ssl_preread on;

}

3.13.3 Directives

ssl preread

Syntax: ssl_preread on | off;

Default off

Context: stream, server

Enables extracting information from the ClientHello message at the preread
phase.

3.13.4 Embedded Variables

$ssl preread server name

Nginx, Inc. p.325 of 379

https://tools.ietf.org/html/rfc5246#section-7.4.1.2
https://tools.ietf.org/html/rfc6066#section-3

CHAPTER 3. STREAM SERVER MODULES 3.13. MODULE NGX STREAM SSL PREREAD MODULE

returns the server name requested through SNI

Nginx, Inc. p.326 of 379

CHAPTER 3. STREAM SERVER MODULES 3.14. MODULE NGX STREAM UPSTREAM MODULE

3.14 Module ngx stream upstream module

3.14.1 Summary . 327
3.14.2 Example Configuration 327
3.14.3 Directives . 328

upstream . 328
server . 328
zone . 330
state . 331
hash . 331
least conn . 332
least time . 332
health check . 332
health check timeout . 333
match . 333

3.14.4 Embedded Variables . 334

3.14.1 Summary

The ngx_stream_upstream_module module (1.9.0) is used to define
groups of servers that can be referenced by the proxy pass directive.

3.14.2 Example Configuration

upstream backend {
hash $remote_addr consistent;

server backend1.example.com:12345 weight=5;
server backend2.example.com:12345;
server unix:/tmp/backend3;

server backup1.example.com:12345 backup;
server backup2.example.com:12345 backup;

}

server {
listen 12346;
proxy_pass backend;

}

Dynamically configurable group, available as part of our
commercial subscription:

resolver 10.0.0.1;

upstream dynamic {
zone upstream_dynamic 64k;

server backend1.example.com:12345 weight=5;
server backend2.example.com:12345 fail_timeout=5s slow_start=30s;
server 192.0.2.1:12345 max_fails=3;
server backend3.example.com:12345 resolve;
server backend4.example.com service=http resolve;

server backup1.example.com:12345 backup;

Nginx, Inc. p.327 of 379

http://nginx.com/products/

CHAPTER 3. STREAM SERVER MODULES 3.14. MODULE NGX STREAM UPSTREAM MODULE

server backup2.example.com:12345 backup;
}

server {
listen 12346;
proxy_pass dynamic;
health_check;

}

3.14.3 Directives

upstream

Syntax: upstream name { . . . }
Default —

Context: stream

Defines a group of servers. Servers can listen on different ports. In addition,
servers listening on TCP and UNIX-domain sockets can be mixed.

Example:

upstream backend {
server backend1.example.com:12345 weight=5;
server 127.0.0.1:12345 max_fails=3 fail_timeout=30s;
server unix:/tmp/backend2;
server backend3.example.com:12345 resolve;

server backup1.example.com:12345 backup;
}

By default, connections are distributed between the servers using a
weighted round-robin balancing method. In the above example, each
7 connections will be distributed as follows: 5 connections go to
backend1.example.com:12345 and one connection to each of the second
and third servers. If an error occurs during communication with a server,
the connection will be passed to the next server, and so on until all of the
functioning servers will be tried. If communication with all servers fails, the
connection will be closed.

server

Syntax: server address [parameters];

Default —

Context: upstream

Defines the address and other parameters of a server. The address can be
specified as a domain name or IP address with an obligatory port, or as a
UNIX-domain socket path specified after the “unix:” prefix. A domain name
that resolves to several IP addresses defines multiple servers at once.

The following parameters can be defined:

weight=number
sets the weight of the server, by default, 1.

Nginx, Inc. p.328 of 379

CHAPTER 3. STREAM SERVER MODULES 3.14. MODULE NGX STREAM UPSTREAM MODULE

max_conns=number
limits the maximum number of simultaneous connections to the proxied
server (1.11.5). Default value is zero, meaning there is no limit. If the
server group does not reside in the shared memory, the limitation works
per each worker process.

Prior to version 1.11.5, this parameter was available as part of our
commercial subscription.

max_fails=number
sets the number of unsuccessful attempts to communicate with the
server that should happen in the duration set by the fail_timeout
parameter to consider the server unavailable for a duration also set by
the fail_timeout parameter. By default, the number of unsuccessful
attempts is set to 1. The zero value disables the accounting of attempts.
Here, an unsuccessful attempt is an error or timeout while establishing
a connection with the server.

fail_timeout=time
sets

• the time during which the specified number of unsuccessful attempts
to communicate with the server should happen to consider the server
unavailable;

• and the period of time the server will be considered unavailable.

By default, the parameter is set to 10 seconds.

backup
marks the server as a backup server. Connections to the backup server
will be passed when the primary servers are unavailable.

down
marks the server as permanently unavailable.

Additionally, the following parameters are available as part of our
commercial subscription:

resolve
monitors changes of the IP addresses that correspond to a domain name
of the server, and automatically modifies the upstream configuration
without the need of restarting nginx. The server group must reside in
the shared memory.
In order for this parameter to work, the resolver directive must be
specified in the stream block. Example:

stream {
resolver 10.0.0.1;

upstream u {
zone ...;
...
server example.com:12345 resolve;

Nginx, Inc. p.329 of 379

http://nginx.com/products/
http://nginx.com/products/

CHAPTER 3. STREAM SERVER MODULES 3.14. MODULE NGX STREAM UPSTREAM MODULE

}
}

service=name
enables resolving of DNS SRV records and sets the service name (1.9.13).
In order for this parameter to work, it is necessary to specify the resolve
parameter for the server and specify a hostname without a port number.
If the service name does not contain a dot (“.”), then the RFC-compliant
name is constructed and the TCP protocol is added to the service prefix.
For example, to look up the _http._tcp.backend.example.com
SRV record, it is necessary to specify the directive:

server backend.example.com service=http resolve;

If the service name contains one or more dots, then the name is
constructed by joining the service prefix and the server name. For
example, to look up the _http._tcp.backend.example.com and
server1.backend.example.com SRV records, it is necessary to
specify the directives:

server backend.example.com service=_http._tcp resolve;
server example.com service=server1.backend resolve;

Highest-priority SRV records (records with the same lowest-number
priority value) are resolved as primary servers, the rest of SRV records
are resolved as backup servers. If the backup parameter is specified for
the server, high-priority SRV records are resolved as backup servers, the
rest of SRV records are ignored.

slow_start=time
sets the time during which the server will recover its weight from zero
to a nominal value, when unhealthy server becomes healthy, or when
the server becomes available after a period of time it was considered
unavailable. Default value is zero, i.e. slow start is disabled.

If there is only a single server in a group, max_fails, fail_timeout
and slow_start parameters are ignored, and such a server will never be
considered unavailable.

zone

Syntax: zone name [size];

Default —

Context: upstream

Defines the name and size of the shared memory zone that keeps the group’s
configuration and run-time state that are shared between worker processes.
Several groups may share the same zone. In this case, it is enough to specify
the zone size only once.

Nginx, Inc. p.330 of 379

https://tools.ietf.org/html/rfc2782
https://tools.ietf.org/html/rfc2782

CHAPTER 3. STREAM SERVER MODULES 3.14. MODULE NGX STREAM UPSTREAM MODULE

Additionally, as part of our commercial subscription, such groups allow
changing the group membership or modifying the settings of a particular server
without the need of restarting nginx. The configuration is accessible via a
special location handled by upstream conf.

state

Syntax: state file;

Default —

Context: upstream
This directive appeared in version 1.9.7.

Specifies a file that keeps the state of the dynamically configurable group.
Examples:

state /var/lib/nginx/state/servers.conf; # path for Linux
state /var/db/nginx/state/servers.conf; # path for FreeBSD

The state is currently limited to the list of servers with their parameters.
The file is read when parsing the configuration and is updated each time the
upstream configuration is changed. Changing the file content directly should
be avoided. The directive cannot be used along with the server directive.

Changes made during configuration reload or binary upgrade can be lost.

This directive is available as part of our commercial subscription.

hash

Syntax: hash key [consistent];

Default —

Context: upstream

Specifies a load balancing method for a server group where client-server
mapping is based on the hashed key value. The key can contain text, variables,
and their combinations (1.11.2). Usage example:

hash $remote_addr;

Note that adding or removing a server from the group may result in
remapping most of the keys to different servers. The method is compatible
with the Cache::Memcached Perl library.

If the consistent parameter is specified, the ketama consistent hashing
method will be used instead. The method ensures that only a few keys will be
remapped to different servers when a server is added to or removed from the
group. This helps to achieve a higher cache hit ratio for caching servers. The
method is compatible with the Cache::Memcached::Fast Perl library with the
ketama points parameter set to 160.

Nginx, Inc. p.331 of 379

http://nginx.com/products/
http://nginx.org/en/docs/control.html#reconfiguration
http://nginx.org/en/docs/control.html#upgrade
http://nginx.com/products/
http://search.cpan.org/perldoc?Cache%3A%3AMemcached
http://www.last.fm/user/RJ/journal/2007/04/10/392555/
http://search.cpan.org/perldoc?Cache%3A%3AMemcached%3A%3AFast

CHAPTER 3. STREAM SERVER MODULES 3.14. MODULE NGX STREAM UPSTREAM MODULE

least conn

Syntax: least_conn;

Default —

Context: upstream

Specifies that a server group should use a load balancing method where a
connection is passed to the server with the least number of active connections,
taking into account weights of servers. If there are several such servers, they
are tried in turn using a weighted round-robin balancing method.

least time

Syntax: least_time connect | first_byte | last_byte;

Default —

Context: upstream

Specifies that a group should use a load balancing method where a
connection is passed to the server with the least average time and least number
of active connections, taking into account weights of servers. If there are several
such servers, they are tried in turn using a weighted round-robin balancing
method.

If the connect parameter is specified, time to connect to the upstream
server is used. If the first_byte parameter is specified, time to receive the
first byte of data is used. If the last_byte is specified, time to receive the
last byte of data is used.

This directive is available as part of our commercial subscription.

health check

Syntax: health_check [parameters];

Default —

Context: server

Enables periodic health checks of the servers in a group.
The following optional parameters are supported:

interval=time
sets the interval between two consecutive health checks, by default, 5
seconds;

fails=number
sets the number of consecutive failed health checks of a particular server
after which this server will be considered unhealthy, by default, 1;

passes=number
sets the number of consecutive passed health checks of a particular server
after which the server will be considered healthy, by default, 1;

match=name

Nginx, Inc. p.332 of 379

http://nginx.com/products/

CHAPTER 3. STREAM SERVER MODULES 3.14. MODULE NGX STREAM UPSTREAM MODULE

specifies the match block configuring the tests that a successful
connection should pass in order for a health check to pass. By default,
only the ability to establish a TCP connection with the server is checked;

port=number
defines the port used when connecting to a server to perform a health
check (1.9.7); by default, equals the server port;

udp
specifies that the UDP protocol should be used for health checks instead
of the default TCP protocol (1.9.13); requires a match block with the
send and expect parameters.

For example,

server {
proxy_pass backend;
health_check;

}

will check the ability to establish a TCP connection to each server in the
backend group every five seconds. When a connection to the server cannot
be established, the health check will fail, and the server will be considered
unhealthy. Client connections are not passed to unhealthy servers.

Health checks can also be configured to test data obtained from the server.
Tests are configured separately using the match directive and referenced in the
match parameter.

The server group must reside in the shared memory.
If several health checks are defined for the same group of servers, a single

failure of any check will make the corresponding server be considered unhealthy.

This directive is available as part of our commercial subscription.

health check timeout

Syntax: health_check_timeout timeout;

Default 5s

Context: stream, server

Overrides the proxy timeout value for health checks.

This directive is available as part of our commercial subscription.

match

Syntax: match name { . . . }
Default —

Context: stream

Defines the named test set used to verify server responses to health checks.
The following parameters can be configured:

Nginx, Inc. p.333 of 379

http://nginx.com/products/
http://nginx.com/products/

CHAPTER 3. STREAM SERVER MODULES 3.14. MODULE NGX STREAM UPSTREAM MODULE

send string;
sends a string to the server;

expect string | ~ regex;
a literal string (1.9.12) or a regular expression that the data obtained
from the server should match. The regular expression is specified with
the preceding “~*” modifier (for case-insensitive matching), or the “~”
modifier (for case-sensitive matching).

Both send and expect parameters can contain hexadecimal literals with the
prefix “\x” followed by two hex digits, for example, “\x80” (1.9.12).

Health check is passed if:

• the TCP connection was successfully established;

• the string from the send parameter, if specified, was sent;

• the data obtained from the server matched the string or regular
expression from the expect parameter, if specified;

• the time elapsed does not exceed the value specified in the health check -
timeout directive.

Example:

upstream backend {
zone upstream_backend 10m;
server 127.0.0.1:12345;

}

match http {
send "GET / HTTP/1.0\r\nHost: localhost\r\n\r\n";
expect ~ "200 OK";

}

server {
listen 12346;
proxy_pass backend;
health_check match=http;

}

Only the first proxy buffer size bytes of data obtained from the server are
examined.

This directive is available as part of our commercial subscription.

3.14.4 Embedded Variables

The ngx_stream_upstream_module module supports the following
embedded variables:

Nginx, Inc. p.334 of 379

http://nginx.com/products/

CHAPTER 3. STREAM SERVER MODULES 3.14. MODULE NGX STREAM UPSTREAM MODULE

$upstream addr
keeps the IP address and port, or the path to the UNIX-domain
socket of the upstream server (1.11.4). If several servers were con-
tacted during proxying, their addresses are separated by commas, e.g.
“192.168.1.1:12345, 192.168.1.2:12345, unix:/tmp/sock”.

$upstream bytes sent
number of bytes sent to an upstream server (1.11.4). Values from several
connections are separated by commas like addresses in the $upstream -
addr variable.

$upstream bytes received
number of bytes received from an upstream server (1.11.4). Values
from several connections are separated by commas like addresses in the
$upstream addr variable.

$upstream connect time
time to connect to the upstream server (1.11.4); the time is kept in
seconds with millisecond resolution. Times of several connections are
separated by commas like addresses in the $upstream addr variable.

$upstream first byte time
time to receive the first byte of data (1.11.4); the time is kept in seconds
with millisecond resolution. Times of several connections are separated
by commas like addresses in the $upstream addr variable.

$upstream session time
session duration in seconds with millisecond resolution (1.11.4). Times
of several connections are separated by commas like addresses in the
$upstream addr variable.

Nginx, Inc. p.335 of 379

Chapter 4

Mail server modules

4.1 Module ngx mail core module

4.1.1 Summary . 336
4.1.2 Example Configuration 336
4.1.3 Directives . 337

listen . 337
mail . 338
protocol . 339
resolver . 339
resolver timeout . 340
server . 340
server name . 340
timeout . 340

4.1.1 Summary

This module is not built by default, it should be enabled with the
--with-mail configuration parameter.

4.1.2 Example Configuration

worker_processes 1;

error_log /var/log/nginx/error.log info;

events {
worker_connections 1024;

}

mail {
server_name mail.example.com;
auth_http localhost:9000/cgi-bin/nginxauth.cgi;

imap_capabilities IMAP4rev1 UIDPLUS IDLE LITERAL+ QUOTA;

pop3_auth plain apop cram-md5;
pop3_capabilities LAST TOP USER PIPELINING UIDL;

336

CHAPTER 4. MAIL SERVER MODULES 4.1. MODULE NGX MAIL CORE MODULE

smtp_auth login plain cram-md5;
smtp_capabilities "SIZE 10485760" ENHANCEDSTATUSCODES 8BITMIME DSN;
xclient off;

server {
listen 25;
protocol smtp;

}
server {

listen 110;
protocol pop3;
proxy_pass_error_message on;

}
server {

listen 143;
protocol imap;

}
server {

listen 587;
protocol smtp;

}
}

4.1.3 Directives

listen

Syntax: listen address:port [ssl] [backlog=number] [bind]

[ipv6only=on|off]

[so_keepalive=on|off|[keepidle]:[keepintvl]:[keepcnt]];

Default —

Context: server

Sets the address and port for the socket on which the server will accept
requests. It is possible to specify just the port. The address can also be a
hostname, for example:

listen 127.0.0.1:110;
listen *:110;
listen 110; # same as *:110
listen localhost:110;

IPv6 addresses (0.7.58) are specified in square brackets:

listen [::1]:110;
listen [::]:110;

UNIX-domain sockets (1.3.5) are specified with the “unix:” prefix:

listen unix:/var/run/nginx.sock;

Different servers must listen on different address:port pairs.
The ssl parameter allows specifying that all connections accepted on this

port should work in SSL mode.
The listen directive can have several additional parameters specific to

socket-related system calls.

Nginx, Inc. p.337 of 379

CHAPTER 4. MAIL SERVER MODULES 4.1. MODULE NGX MAIL CORE MODULE

backlog=number
sets the backlog parameter in the listen call that limits the
maximum length for the queue of pending connections (1.9.2). By
default, backlog is set to -1 on FreeBSD, DragonFly BSD, and Mac
OS X, and to 511 on other platforms.

bind
this parameter instructs to make a separate bind call for a given
address:port pair. The fact is that if there are several listen directives
with the same port but different addresses, and one of the listen
directives listens on all addresses for the given port (*:port), nginx will
bind only to *:port. It should be noted that the getsockname system
call will be made in this case to determine the address that accepted the
connection. If the ipv6only or so_keepalive parameters are used
then for a given address:port pair a separate bind call will always be
made.

ipv6only=on|off
this parameter determines (via the IPV6_V6ONLY socket option)
whether an IPv6 socket listening on a wildcard address [::] will
accept only IPv6 connections or both IPv6 and IPv4 connections. This
parameter is turned on by default. It can only be set once on start.

so_keepalive=on|off|[keepidle]:[keepintvl]:[keepcnt]
this parameter configures the “TCP keepalive” behavior for the listening
socket. If this parameter is omitted then the operating system’s settings
will be in effect for the socket. If it is set to the value “on”, the
SO_KEEPALIVE option is turned on for the socket. If it is set to the
value “off”, the SO_KEEPALIVE option is turned off for the socket.
Some operating systems support setting of TCP keepalive parameters on
a per-socket basis using the TCP_KEEPIDLE, TCP_KEEPINTVL, and
TCP_KEEPCNT socket options. On such systems (currently, Linux 2.4+,
NetBSD 5+, and FreeBSD 9.0-STABLE), they can be configured using
the keepidle, keepintvl, and keepcnt parameters. One or two parameters
may be omitted, in which case the system default setting for the
corresponding socket option will be in effect. For example,

so_keepalive=30m::10

will set the idle timeout (TCP_KEEPIDLE) to 30 minutes, leave the probe
interval (TCP_KEEPINTVL) at its system default, and set the probes
count (TCP_KEEPCNT) to 10 probes.

mail

Syntax: mail { . . . }
Default —

Context: main

Provides the configuration file context in which the mail server directives
are specified.

Nginx, Inc. p.338 of 379

CHAPTER 4. MAIL SERVER MODULES 4.1. MODULE NGX MAIL CORE MODULE

protocol

Syntax: protocol imap | pop3 | smtp;

Default —

Context: server

Sets the protocol for a proxied server. Supported protocols are IMAP,
POP3, and SMTP.

If the directive is not set, the protocol can be detected automatically based
on the well-known port specified in the listen directive:

• imap: 143, 993

• pop3: 110, 995

• smtp: 25, 587, 465

Unnecessary protocols can be disabled using the configuration parameters
--without-mail_imap_module, --without-mail_pop3_module,
and --without-mail_smtp_module.

resolver

Syntax: resolver address . . . [valid=time];

Syntax: resolver off;

Default off

Context: mail, server

Configures name servers used to find the client’s hostname to pass it to the
authentication server, and in the XCLIENT command when proxying SMTP.
For example:

resolver 127.0.0.1 [::1]:5353;

An address can be specified as a domain name or IP address, and an
optional port (1.3.1, 1.2.2). If port is not specified, the port 53 is used. Name
servers are queried in a round-robin fashion.

Before version 1.1.7, only a single name server could be configured.
Specifying name servers using IPv6 addresses is supported starting from
versions 1.3.1 and 1.2.2.

By default, nginx caches answers using the TTL value of a response. An
optional valid parameter allows overriding it:

resolver 127.0.0.1 [::1]:5353 valid=30s;

Before version 1.1.9, tuning of caching time was not possible, and nginx
always cached answers for the duration of 5 minutes.

The special value off disables resolving.

Nginx, Inc. p.339 of 379

http://nginx.org/en/docs/configure.html

CHAPTER 4. MAIL SERVER MODULES 4.1. MODULE NGX MAIL CORE MODULE

resolver timeout

Syntax: resolver_timeout time;

Default 30s

Context: mail, server

Sets a timeout for DNS operations, for example:

resolver_timeout 5s;

server

Syntax: server { . . . }
Default —

Context: mail

Sets the configuration for a server.

server name

Syntax: server_name name;

Default hostname

Context: mail, server

Sets the server name that is used:

• in the initial POP3/SMTP server greeting;

• in the salt during the SASL CRAM-MD5 authentication;

• in the EHLO command when connecting to the SMTP backend, if the
passing of the XCLIENT command is enabled.

If the directive is not specified, the machine’s hostname is used.

timeout

Syntax: timeout time;

Default 60s

Context: mail, server

Sets the timeout that is used before proxying to the backend starts.

Nginx, Inc. p.340 of 379

CHAPTER 4. MAIL SERVER MODULES 4.2. MODULE NGX MAIL AUTH HTTP MODULE

4.2 Module ngx mail auth http module

4.2.1 Directives . 341
auth http . 341
auth http header . 341
auth http pass client cert 341
auth http timeout . 341

4.2.2 Protocol . 342

4.2.1 Directives

auth http

Syntax: auth_http URL;

Default —

Context: mail, server

Sets the URL of the HTTP authentication server. The protocol is described
below.

auth http header

Syntax: auth_http_header header value;

Default —

Context: mail, server

Appends the specified header to requests sent to the authentication server.
This header can be used as the shared secret to verify that the request comes
from nginx. For example:

auth_http_header X-Auth-Key "secret_string";

auth http pass client cert

Syntax: auth_http_pass_client_cert on | off;

Default off

Context: mail, server
This directive appeared in version 1.7.11.

Appends the Auth-SSL-Cert header with the client certificate in the
PEM format (urlencoded) to requests sent to the authentication server.

auth http timeout

Syntax: auth_http_timeout time;

Default 60s

Context: mail, server

Sets the timeout for communication with the authentication server.

Nginx, Inc. p.341 of 379

CHAPTER 4. MAIL SERVER MODULES 4.2. MODULE NGX MAIL AUTH HTTP MODULE

4.2.2 Protocol

The HTTP protocol is used to communicate with the authentication server.
The data in the response body is ignored, the information is passed only in
the headers.

Examples of requests and responses:
Request:

GET /auth HTTP/1.0
Host: localhost
Auth-Method: plain # plain/apop/cram-md5
Auth-User: user
Auth-Pass: password
Auth-Protocol: imap # imap/pop3/smtp
Auth-Login-Attempt: 1
Client-IP: 192.0.2.42
Client-Host: client.example.org

Good response:

HTTP/1.0 200 OK
Auth-Status: OK
Auth-Server: 198.51.100.1
Auth-Port: 143

Bad response:

HTTP/1.0 200 OK
Auth-Status: Invalid login or password
Auth-Wait: 3

If there is no Auth-Wait header, an error will be returned and the
connection will be closed. The current implementation allocates memory
for each authentication attempt. The memory is freed only at the end
of a session. Therefore, the number of invalid authentication attempts in
a single session must be limited — the server must respond without the
Auth-Wait header after 10-20 attempts (the attempt number is passed in
the Auth-Login-Attempt header).

When the APOP or CRAM-MD5 are used, request-response will look as
follows:

GET /auth HTTP/1.0
Host: localhost
Auth-Method: apop
Auth-User: user
Auth-Salt: <238188073.1163692009@mail.example.com>
Auth-Pass: auth_response
Auth-Protocol: imap
Auth-Login-Attempt: 1
Client-IP: 192.0.2.42
Client-Host: client.example.org

Good response:

HTTP/1.0 200 OK
Auth-Status: OK
Auth-Server: 198.51.100.1

Nginx, Inc. p.342 of 379

CHAPTER 4. MAIL SERVER MODULES 4.2. MODULE NGX MAIL AUTH HTTP MODULE

Auth-Port: 143
Auth-Pass: plain-text-pass

If the Auth-User header exists in the response, it overrides the username
used to authenticate with the backend.

For the SMTP, the response additionally takes into account the
Auth-Error-Code header — if exists, it is used as a response code in case
of an error. Otherwise, the 535 5.7.0 code will be added to the Auth-Status
header.

For example, if the following response is received from the authentication
server:

HTTP/1.0 200 OK
Auth-Status: Temporary server problem, try again later
Auth-Error-Code: 451 4.3.0
Auth-Wait: 3

then the SMTP client will receive an error

451 4.3.0 Temporary server problem, try again later

If proxying SMTP does not require authentication, the request will look as
follows:

GET /auth HTTP/1.0
Host: localhost
Auth-Method: none
Auth-User:
Auth-Pass:
Auth-Protocol: smtp
Auth-Login-Attempt: 1
Client-IP: 192.0.2.42
Client-Host: client.example.org
Auth-SMTP-Helo: client.example.org
Auth-SMTP-From: MAIL FROM: <>
Auth-SMTP-To: RCPT TO: <postmaster@mail.example.com>

For the SSL/TLS client connection (1.7.11), the Auth-SSL header is
added, and Auth-SSL-Verify will contain the result of client certificate
verification, if enabled: “SUCCESS”, “FAILED”, and“NONE” if a certificate was
not present. When the client certificate was present, its details are passed in
the following request headers: Auth-SSL-Subject, Auth-SSL-Issuer,
Auth-SSL-Serial, and Auth-SSL-Fingerprint. If auth http pass -
client cert is enabled, the certificate itself is passed in the Auth-SSL-Cert
header. The request will look as follows:

GET /auth HTTP/1.0
Host: localhost
Auth-Method: plain
Auth-User: user
Auth-Pass: password
Auth-Protocol: imap
Auth-Login-Attempt: 1
Client-IP: 192.0.2.42
Auth-SSL: on
Auth-SSL-Verify: SUCCESS

Nginx, Inc. p.343 of 379

CHAPTER 4. MAIL SERVER MODULES 4.2. MODULE NGX MAIL AUTH HTTP MODULE

Auth-SSL-Subject: /CN=example.com
Auth-SSL-Issuer: /CN=example.com
Auth-SSL-Serial: C07AD56B846B5BFF
Auth-SSL-Fingerprint: 29d6a80a123d13355ed16b4b04605e29cb55a5ad

Nginx, Inc. p.344 of 379

CHAPTER 4. MAIL SERVER MODULES 4.3. MODULE NGX MAIL PROXY MODULE

4.3 Module ngx mail proxy module

4.3.1 Directives . 345
proxy buffer . 345
proxy pass error message 345
proxy timeout . 345
xclient . 346

4.3.1 Directives

proxy buffer

Syntax: proxy_buffer size;

Default 4k|8k

Context: mail, server

Sets the size of the buffer used for proxying. By default, the buffer size is
equal to one memory page. Depending on a platform, it is either 4K or 8K.

proxy pass error message

Syntax: proxy_pass_error_message on | off;

Default off

Context: mail, server

Indicates whether to pass the error message obtained during the
authentication on the backend to the client.

Usually, if the authentication in nginx is a success, the backend cannot
return an error. If it nevertheless returns an error, it means some internal
error has occurred. In such case the backend message can contain information
that should not be shown to the client. However, responding with an error
for the correct password is a normal behavior for some POP3 servers. For
example, CommuniGatePro informs a user about mailbox overflow or other
events by periodically outputting the authentication error. The directive
should be enabled in this case.

proxy timeout

Syntax: proxy_timeout timeout;

Default 24h

Context: mail, server

Sets the timeout between two successive read or write operations on client
or proxied server connections. If no data is transmitted within this time, the
connection is closed.

Nginx, Inc. p.345 of 379

http://www.stalker.com/CommuniGatePro/Alerts.html#Quota
http://www.stalker.com/CommuniGatePro/POP.html#Alerts

CHAPTER 4. MAIL SERVER MODULES 4.3. MODULE NGX MAIL PROXY MODULE

xclient

Syntax: xclient on | off;

Default on

Context: mail, server

Enables or disables the passing of the XCLIENT command with client
parameters when connecting to the SMTP backend.

With XCLIENT, the MTA is able to write client information to the log and
apply various limitations based on this data.

If XCLIENT is enabled then nginx passes the following commands when
connecting to the backend:

• EHLO with the server name

• XCLIENT

• EHLO or HELO, as passed by the client

If the name found by the client IP address points to the same address, it is
passed in the NAME parameter of the XCLIENT command. If the name could
not be found, points to a different address, or resolver is not specified, the
[UNAVAILABLE] is passed in the NAME parameter. If an error has occurred
in the process of resolving, the [TEMPUNAVAIL] value is used.

If XCLIENT is disabled then nginx passes the EHLO command with the
server name when connecting to the backend if the client has passed EHLO, or
HELO with the server name, otherwise.

Nginx, Inc. p.346 of 379

http://www.postfix.org/XCLIENT_README.html

CHAPTER 4. MAIL SERVER MODULES 4.4. MODULE NGX MAIL SSL MODULE

4.4 Module ngx mail ssl module

4.4.1 Summary . 347
4.4.2 Example Configuration 347
4.4.3 Directives . 348

ssl . 348
ssl certificate . 348
ssl certificate key . 349
ssl ciphers . 349
ssl client certificate . 349
ssl crl . 349
ssl dhparam . 350
ssl ecdh curve . 350
ssl password file . 350
ssl prefer server ciphers 351
ssl protocols . 351
ssl session cache . 351
ssl session ticket key . 352
ssl session tickets . 352
ssl session timeout . 352
ssl trusted certificate . 353
ssl verify client . 353
ssl verify depth . 353
starttls . 353

4.4.1 Summary

The ngx_mail_ssl_module module provides the necessary support for
a mail proxy server to work with the SSL/TLS protocol.

This module is not built by default, it should be enabled with the
--with-mail_ssl_module configuration parameter.

This module requires the OpenSSL library.

4.4.2 Example Configuration

To reduce the processor load, it is recommended to

• set the number of worker processes equal to the number of processors,

• enable the shared session cache,

• disable the built-in session cache,

• and possibly increase the session lifetime (by default, 5 minutes):

Nginx, Inc. p.347 of 379

http://www.openssl.org

CHAPTER 4. MAIL SERVER MODULES 4.4. MODULE NGX MAIL SSL MODULE

worker_processes auto;

mail {

...

server {
listen 993 ssl;

ssl_protocols TLSv1 TLSv1.1 TLSv1.2;
ssl_ciphers AES128-SHA:AES256-SHA:RC4-SHA:DES-CBC3-SHA:RC4-MD5;
ssl_certificate /usr/local/nginx/conf/cert.pem;
ssl_certificate_key /usr/local/nginx/conf/cert.key;
ssl_session_cache shared:SSL:10m;
ssl_session_timeout 10m;

...
}

4.4.3 Directives

ssl

Syntax: ssl on | off;

Default off

Context: mail, server

Enables the SSL/TLS protocol for the given server.

ssl certificate

Syntax: ssl_certificate file;

Default —

Context: mail, server

Specifies a file with the certificate in the PEM format for the given server. If
intermediate certificates should be specified in addition to a primary certificate,
they should be specified in the same file in the following order: the primary
certificate comes first, then the intermediate certificates. A secret key in the
PEM format may be placed in the same file.

Since version 1.11.0, this directive can be specified multiple times to load
certificates of different types, for example, RSA and ECDSA:

server {
listen 993 ssl;

ssl_certificate example.com.rsa.crt;
ssl_certificate_key example.com.rsa.key;

ssl_certificate example.com.ecdsa.crt;
ssl_certificate_key example.com.ecdsa.key;

...
}

Nginx, Inc. p.348 of 379

CHAPTER 4. MAIL SERVER MODULES 4.4. MODULE NGX MAIL SSL MODULE

Only OpenSSL 1.0.2 or higher supports separate certificate chains for
different certificates. With older versions, only one certificate chain can be
used.

ssl certificate key

Syntax: ssl_certificate_key file;

Default —

Context: mail, server

Specifies a file with the secret key in the PEM format for the given server.
The value engine:name:id can be specified instead of the file (1.7.9), which

loads a secret key with a specified id from the OpenSSL engine name.

ssl ciphers

Syntax: ssl_ciphers ciphers;

Default HIGH:!aNULL:!MD5

Context: mail, server

Specifies the enabled ciphers. The ciphers are specified in the format
understood by the OpenSSL library, for example:

ssl_ciphers ALL:!aNULL:!EXPORT56:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP;

The full list can be viewed using the “openssl ciphers” command.

The previous versions of nginx used different ciphers by default.

ssl client certificate

Syntax: ssl_client_certificate file;

Default —

Context: mail, server
This directive appeared in version 1.7.11.

Specifies a file with trusted CA certificates in the PEM format used to
verify client certificates.

The list of certificates will be sent to clients. If this is not desired, the
ssl trusted certificate directive can be used.

ssl crl

Syntax: ssl_crl file;

Default —

Context: mail, server
This directive appeared in version 1.7.11.

Specifies a file with revoked certificates (CRL) in the PEM format used to
verify client certificates.

Nginx, Inc. p.349 of 379

http://nginx.org/en/docs/http/configuring_https_servers.html#compatibility

CHAPTER 4. MAIL SERVER MODULES 4.4. MODULE NGX MAIL SSL MODULE

ssl dhparam

Syntax: ssl_dhparam file;

Default —

Context: mail, server
This directive appeared in version 0.7.2.

Specifies a file with DH parameters for DHE ciphers.

ssl ecdh curve

Syntax: ssl_ecdh_curve curve;

Default auto

Context: mail, server
This directive appeared in versions 1.1.0 and 1.0.6.

Specifies a curve for ECDHE ciphers.
When using OpenSSL 1.0.2 or higher, it is possible to specify multiple

curves (1.11.0), for example:

ssl_ecdh_curve prime256v1:secp384r1;

The special value auto (1.11.0) instructs nginx to use a list built into the
OpenSSL library when using OpenSSL 1.0.2 or higher, or prime256v1 with
older versions.

Prior to version 1.11.0, the prime256v1 curve was used by default.

ssl password file

Syntax: ssl_password_file file;

Default —

Context: mail, server
This directive appeared in version 1.7.3.

Specifies a file with passphrases for secret keys where each passphrase is
specified on a separate line. Passphrases are tried in turn when loading the
key.

Example:

mail {
ssl_password_file /etc/keys/global.pass;
...

server {
server_name mail1.example.com;
ssl_certificate_key /etc/keys/first.key;

}

server {
server_name mail2.example.com;

named pipe can also be used instead of a file
ssl_password_file /etc/keys/fifo;

Nginx, Inc. p.350 of 379

CHAPTER 4. MAIL SERVER MODULES 4.4. MODULE NGX MAIL SSL MODULE

ssl_certificate_key /etc/keys/second.key;
}

}

ssl prefer server ciphers

Syntax: ssl_prefer_server_ciphers on | off;

Default off

Context: mail, server

Specifies that server ciphers should be preferred over client ciphers when
the SSLv3 and TLS protocols are used.

ssl protocols

Syntax: ssl_protocols [SSLv2] [SSLv3] [TLSv1] [TLSv1.1] [TLSv1.2];

Default TLSv1 TLSv1.1 TLSv1.2

Context: mail, server

Enables the specified protocols. The TLSv1.1 and TLSv1.2 parameters
work only when the OpenSSL library of version 1.0.1 or higher is used.

The TLSv1.1 and TLSv1.2 parameters are supported starting from
versions 1.1.13 and 1.0.12 so when the OpenSSL version 1.0.1 or higher is
used on older nginx versions, these protocols work, but cannot be disabled.

ssl session cache

Syntax: ssl_session_cache off | none | [builtin[:size]]

[shared:name:size];

Default none

Context: mail, server

Sets the types and sizes of caches that store session parameters. A cache
can be of any of the following types:

off
the use of a session cache is strictly prohibited: nginx explicitly tells a
client that sessions may not be reused.

none
the use of a session cache is gently disallowed: nginx tells a client that
sessions may be reused, but does not actually store session parameters
in the cache.

builtin
a cache built in OpenSSL; used by one worker process only. The cache
size is specified in sessions. If size is not given, it is equal to 20480
sessions. Use of the built-in cache can cause memory fragmentation.

Nginx, Inc. p.351 of 379

CHAPTER 4. MAIL SERVER MODULES 4.4. MODULE NGX MAIL SSL MODULE

shared
a cache shared between all worker processes. The cache size is specified
in bytes; one megabyte can store about 4000 sessions. Each shared cache
should have an arbitrary name. A cache with the same name can be used
in several servers.

Both cache types can be used simultaneously, for example:

ssl_session_cache builtin:1000 shared:SSL:10m;

but using only shared cache without the built-in cache should be more
efficient.

ssl session ticket key

Syntax: ssl_session_ticket_key file;

Default —

Context: mail, server
This directive appeared in version 1.5.7.

Sets a file with the secret key used to encrypt and decrypt TLS session
tickets. The directive is necessary if the same key has to be shared between
multiple servers. By default, a randomly generated key is used.

If several keys are specified, only the first key is used to encrypt TLS session
tickets. This allows configuring key rotation, for example:

ssl_session_ticket_key current.key;
ssl_session_ticket_key previous.key;

The file must contain 48 bytes of random data and can be created using
the following command:

openssl rand 48 > ticket.key

ssl session tickets

Syntax: ssl_session_tickets on | off;

Default on

Context: mail, server
This directive appeared in version 1.5.9.

Enables or disables session resumption through TLS session tickets.

ssl session timeout

Syntax: ssl_session_timeout time;

Default 5m

Context: mail, server

Specifies a time during which a client may reuse the session parameters.

Nginx, Inc. p.352 of 379

http://tools.ietf.org/html/rfc5077

CHAPTER 4. MAIL SERVER MODULES 4.4. MODULE NGX MAIL SSL MODULE

ssl trusted certificate

Syntax: ssl_trusted_certificate file;

Default —

Context: mail, server
This directive appeared in version 1.7.11.

Specifies a file with trusted CA certificates in the PEM format used to
verify client certificates.

In contrast to the certificate set by ssl client certificate, the list of these
certificates will not be sent to clients.

ssl verify client

Syntax: ssl_verify_client on | off | optional | optional_no_ca;

Default off

Context: mail, server
This directive appeared in version 1.7.11.

Enables verification of client certificates. The verification result is passed
in the Auth-SSL-Verify header of the authentication request.

The optional parameter requests the client certificate and verifies it if
the certificate is present.

The optional_no_ca parameter requests the client certificate but does
not require it to be signed by a trusted CA certificate. This is intended for
the use in cases when a service that is external to nginx performs the actual
certificate verification. The contents of the certificate is accessible through
requests sent to the authentication server.

ssl verify depth

Syntax: ssl_verify_depth number;

Default 1

Context: mail, server
This directive appeared in version 1.7.11.

Sets the verification depth in the client certificates chain.

starttls

Syntax: starttls on | off | only;

Default off

Context: mail, server

on
allow usage of the STLS command for the POP3 and the STARTTLS
command for the IMAP;

off
deny usage of the STLS and STARTTLS commands;

Nginx, Inc. p.353 of 379

CHAPTER 4. MAIL SERVER MODULES 4.4. MODULE NGX MAIL SSL MODULE

only
require preliminary TLS transition.

Nginx, Inc. p.354 of 379

CHAPTER 4. MAIL SERVER MODULES 4.5. MODULE NGX MAIL IMAP MODULE

4.5 Module ngx mail imap module

4.5.1 Directives . 355
imap auth . 355
imap capabilities . 355
imap client buffer . 355

4.5.1 Directives

imap auth

Syntax: imap_auth method . . . ;

Default plain

Context: mail, server

Sets permitted methods of authentication for IMAP clients. Supported
methods are:

login
AUTH=LOGIN

plain
AUTH=PLAIN

cram-md5
AUTH=CRAM-MD5. In order for this method to work, the password
must be stored unencrypted.

imap capabilities

Syntax: imap_capabilities extension . . . ;

Default IMAP4 IMAP4rev1 UIDPLUS

Context: mail, server

Sets the IMAP protocol extensions list that is passed to the client
in response to the CAPABILITY command. The authentication methods
specified in the imap auth and STARTTLS directives are automatically added
to this list if the starttls directive is enabled.

It makes sense to specify the extensions supported by the IMAP backends to
which the clients are proxied (if these extensions are related to commands used
after the authentication, when nginx transparently proxies a client connection
to the backend).

The current list of standardized extensions is published at www.iana.org.

imap client buffer

Syntax: imap_client_buffer size;

Default 4k|8k

Context: mail, server

Sets the IMAP commands read buffer size. By default, the buffer size is
equal to one memory page. This is either 4K or 8K, depending on a platform.

Nginx, Inc. p.355 of 379

http://tools.ietf.org/html/draft-murchison-sasl-login-00
http://tools.ietf.org/html/rfc4616
http://tools.ietf.org/html/rfc2195
http://tools.ietf.org/html/rfc3501
http://tools.ietf.org/html/rfc2595
http://www.iana.org/assignments/imap4-capabilities

CHAPTER 4. MAIL SERVER MODULES 4.6. MODULE NGX MAIL POP3 MODULE

4.6 Module ngx mail pop3 module

4.6.1 Directives . 356
pop3 auth . 356
pop3 capabilities . 356

4.6.1 Directives

pop3 auth

Syntax: pop3_auth method . . . ;

Default plain

Context: mail, server

Sets permitted methods of authentication for POP3 clients. Supported
methods are:

plain
USER/PASS, AUTH PLAIN, AUTH LOGIN. It is not possible to disable
these methods.

apop
APOP. In order for this method to work, the password must be stored
unencrypted.

cram-md5
AUTH CRAM-MD5. In order for this method to work, the password
must be stored unencrypted.

pop3 capabilities

Syntax: pop3_capabilities extension . . . ;

Default TOP USER UIDL

Context: mail, server

Sets the POP3 protocol extensions list that is passed to the client in
response to the CAPA command.

The authentication methods specified in the pop3 auth and (SASL
extension) and STLS directives, are automatically added to this list if the
starttls directive is enabled.

It makes sense to specify the extensions supported by the POP3 backends
to which the clients are proxied (if these extensions are related to commands
used after the authentication, when nginx transparently proxies the client
connection to the backend).

The current list of standardized extensions is published at www.iana.org.

Nginx, Inc. p.356 of 379

http://tools.ietf.org/html/rfc1939
http://tools.ietf.org/html/rfc4616
http://tools.ietf.org/html/draft-murchison-sasl-login-00
http://tools.ietf.org/html/rfc1939
http://tools.ietf.org/html/rfc2195
http://tools.ietf.org/html/rfc2449
http://tools.ietf.org/html/rfc2449
http://tools.ietf.org/html/rfc2595
http://www.iana.org/assignments/pop3-extension-mechanism

CHAPTER 4. MAIL SERVER MODULES 4.7. MODULE NGX MAIL SMTP MODULE

4.7 Module ngx mail smtp module

4.7.1 Directives . 357
smtp auth . 357
smtp capabilities . 357

4.7.1 Directives

smtp auth

Syntax: smtp_auth method . . . ;

Default login plain

Context: mail, server

Sets permitted methods of SASL authentication for SMTP clients.
Supported methods are:

login
AUTH LOGIN

plain
AUTH PLAIN

cram-md5
AUTH CRAM-MD5. In order for this method to work, the password
must be stored unencrypted.

none
Authentication is not required.

smtp capabilities

Syntax: smtp_capabilities extension . . . ;

Default —

Context: mail, server

Sets the SMTP protocol extensions list that is passed to the client in
response to the EHLO command. Authentication methods specified in the
smtp auth directive are automatically added to this list.

It makes sense to specify the extensions supported by the MTA to which
the clients are proxied (if these extensions are related to commands used after
the authentication, when nginx transparently proxies the client connection to
the backend).

The current list of standardized extensions is published at www.iana.org.

Nginx, Inc. p.357 of 379

http://tools.ietf.org/html/rfc2554
http://tools.ietf.org/html/draft-murchison-sasl-login-00
http://tools.ietf.org/html/rfc4616
http://tools.ietf.org/html/rfc2195
http://www.iana.org/assignments/mail-parameters

Chapter 5

Miscellaneous

5.1 High Availability support for NGINX

Plus

5.1.1 High Availability support 358
5.1.2 Configuring HA setup 359
5.1.3 Check scripts . 360
5.1.4 Checking the status of HA setup 361
5.1.5 Forcing state change . 361
5.1.6 Adding more virtual IP addresses 361
5.1.7 Troubleshooting keepalived and VRRP 362
5.1.8 Miscellaneous . 363

5.1.1 High Availability support

NGINX-HA-Keepalived is a solution for fast and easy configuration of
NGINX Plus in an active-passive high-availability (HA) setup. It is based
on keepalived.

The keepalived project provides a keepalive facility for Linux servers, an
implementation of the VRRP protocol to manage virtual routers (virtual IP
addresses), and a health check facility to determine if a service (web server,
PHP back end, database server, etc.) is up and operational. If a service on
a node fails a configurable number of health checks, keepalived reassigns the
virtual IP address of the node to a secondary node.

The VRRP protocol ensures that one of participating nodes is master. The
backup node listens for VRRP advertisement packets from the master node.
If it does not receive an advertisement packet for a period longer than three
times the configured advertisement interval, the backup node takes over as
master and assigns the configured virtual IP addresses to itself.

358

CHAPTER 5. MISCELLANEOUS 5.1. HIGH AVAILABILITY SUPPORT FOR NGINX PLUS

5.1.2 Configuring HA setup

Run the nginx-ha-setup script (available in the
nginx-ha-keepalived package, must be installed separately) on
both nodes as the root user.

The script configures a high-availability NGINX Plus environment with an
active-passive pair of nodes acting as master and backup. It prompts for the
following data:

• IP address of the local and remote nodes (one of which will be configured
as a master, the other one as a backup.

• One free IP address to be used as the cluster endpoint’s (floating) virtual
IP address.

The configuration of the keepalived daemon is recorded in a text file, /etc¬
/keepalived/keepalived.conf. The configuration blocks in the file
control notification settings, the virtual IP addresses to manage, and the health
checks to use to test the services that rely on virtual IP addresses. Following is
the configuration created by the nginx-ha-setup script on a CentOS 7 machine:

vrrp_script chk_nginx_service {
script "/usr/libexec/keepalived/nginx-ha-check"
interval 3
weight 50

}

vrrp_instance VI_1 {
interface eth0
state BACKUP
priority 101
virtual_router_id 51
advert_int 1
unicast_src_ip 192.168.100.100
unicast_peer {

192.168.100.101
}
authentication {

auth_type PASS
auth_pass f8f0e5114cbe031a3e1e622daf18f82a

}
virtual_ipaddress {

192.168.100.150
}
track_script {

chk_nginx_service
}
notify "/usr/libexec/keepalived/nginx-ha-notify"

}

The configuration shown above is self-explanatory, but a few items are
worth noting:

• Each node in the HA setup needs its own copy of the configuration
file, with values for the priority, unicast_src_ip, and
unicast_peer directives that are appropriate to the node’s status
(master or backup).

Nginx, Inc. p.359 of 379

CHAPTER 5. MISCELLANEOUS 5.1. HIGH AVAILABILITY SUPPORT FOR NGINX PLUS

• The priority directive controls which host becomes the master, as
explained in the next section.

• The notify directive names the notification script included in the
distribution, which can be used to generate syslog messages (or other
notifications) when a state transition or fault occurs.

• The value 51 for the virtual_router_id directive in the
vrrp_instance VI_1 block is a sample value.

• If you have multiple pairs of keepalived instances (or other VRRP
instances) running in your local network, create a vrrp_instance
block for each one, with a unique name (like VI_1 in the sample) and
virtual_router_id number.

5.1.3 Check scripts

There is no fencing mechanism in keepalived. If the two nodes in a pair are
not aware of each other, each assumes it is the master and assigns the virtual IP
address to itself. To prevent this situation, the chk_nginx_service script
is executed regularly to check it’s exit code and adjust the node’s priority as
necessary. Code 0 indicates correct operation, and code 1 (or any nonzero
code) indicates an error.

In the default configuration of the chk_nginx_service script, the
weight directive is set to 50, which means that when the check script succeeds:

• The priority of the first node (which has a base priority of 101) is set to
151.

• The priority of the second node (which has a base priority of 100) is set
to 150.

The first node has higher priority (151 in this case) and becomes master.
Use the interval directive to specify how often the check script executes, in

seconds (it is set to 3 in the default configuration). Note that the check also
fails when the timeout is reached (by default, the timeout is the same as the
check interval).

Use the rise and fall directives to specify how many times the script
must succeed or fail before action is taken (they are not set in the default
configuration).

The default script provided with the nginx-ha-keepalived package
checks if nginx is up. We recommend creating additional scripts as appropriate
for your local setup.

Nginx, Inc. p.360 of 379

CHAPTER 5. MISCELLANEOUS 5.1. HIGH AVAILABILITY SUPPORT FOR NGINX PLUS

5.1.4 Checking the status of HA setup

To see which node is currently the master for a given virtual IP address, run
the ip addr show command for the interface on which the vrrp instance is
defined (in the following commands, interface eth0):

centos7-1 # ip addr show eth0
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP

qlen 1000
link/ether 52:54:00:33:a5:a5 brd ff:ff:ff:ff:ff:ff
inet 192.168.100.100/24 brd 192.168.122.255 scope global dynamic eth0

valid_lft 3071sec preferred_lft 3071sec
inet 192.168.100.150/32 scope global eth0

valid_lft forever preferred_lft forever

centos7-2 # ip addr show eth0
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP

qlen 1000
link/ether 52:54:00:33:a5:87 brd ff:ff:ff:ff:ff:ff
inet 192.168.100.101/24 brd 192.168.122.255 scope global eth0

valid_lft forever preferred_lft forever

In this output, the defined virtual IP address (192.168.100.150) is currently
assigned to the host with real IP address of 192.168.100.100.

When a host’s HA state changes, nginx-ha-keepalived writes it to
the /var/run/nginx-ha-keepalived.state file:

centos7-1 # cat /var/run/nginx-ha-keepalived.state
STATE=MASTER

centos7-2 # cat /var/run/nginx-ha-keepalived.state
STATE=BACKUP

5.1.5 Forcing state change

To force the master node to switch to backup state, run the following
command on it:

service keepalived stop

As it shuts down, keepalived sends a VRRP packet with priority 0 to the
backup node, which causes the backup node to take over the virtual IP address.

5.1.6 Adding more virtual IP addresses

The configuration created by nginx-ha-setup is very basic, and makes
a single IP address highly available. To make more than one IP address highly
available, add each new IP address to the virtual_ipaddress block in
the /etc/keepalived/keepalived.conf configuration file. Then run
the service keepalived reload command on both nodes to reload the
keepalived service:

virtual_ipaddress {
192.168.100.150

Nginx, Inc. p.361 of 379

CHAPTER 5. MISCELLANEOUS 5.1. HIGH AVAILABILITY SUPPORT FOR NGINX PLUS

192.168.100.200
1234:5678:9abc:def::1/64

}

As indicated in this example, keepalived can be utilized in dual-stack
IPv4/IPv6 environments to fail over both IPv4 and IPv6 addresses.

The syntax in the virtual ipaddress block replicates the syntax of the ip
utility.

5.1.7 Troubleshooting keepalived and VRRP

The keepalived daemon logs to syslog. On CentOS, RHEL, and SLES-based
systems, the output is typically written to /var/log/messages, whereas
on Ubuntu and Debian-based systems it is written to /var/log/syslog.
Log entries record events such as startup of the keepalived daemon and state
transitions. Here are a few sample entries that show the keepalived daemon
starting up, and the node transitioning a VRRP instance to the master state:

Feb 27 14:42:04 centos7-1 systemd: Starting LVS and VRRP High Availability
Monitor...

Feb 27 14:42:04 centos7-1 Keepalived[19242]: Starting Keepalived v1.2.15
(02/26,2015)

Feb 27 14:42:04 centos7-1 Keepalived[19243]: Starting VRRP child process, pid
=19244

Feb 27 14:42:04 centos7-1 Keepalived_vrrp[19244]: Registering Kernel netlink
reflector

Feb 27 14:42:04 centos7-1 Keepalived_vrrp[19244]: Registering Kernel netlink
command channel

Feb 27 14:42:04 centos7-1 Keepalived_vrrp[19244]: Registering gratuitous ARP
shared channel

Feb 27 14:42:05 centos7-1 systemd: Started LVS and VRRP High Availability
Monitor.

Feb 27 14:42:05 centos7-1 Keepalived_vrrp[19244]: Opening file ’/etc/keepalived
/keepalived.conf’.

Feb 27 14:42:05 centos7-1 Keepalived_vrrp[19244]: Truncating auth_pass to 8
characters

Feb 27 14:42:05 centos7-1 Keepalived_vrrp[19244]: Configuration is using :
64631 Bytes

Feb 27 14:42:05 centos7-1 Keepalived_vrrp[19244]: Using LinkWatch kernel
netlink reflector...

Feb 27 14:42:05 centos7-1 Keepalived_vrrp[19244]: VRRP_Instance(VI_1) Entering
BACKUP STATE

Feb 27 14:42:05 centos7-1 Keepalived_vrrp[19244]: VRRP sockpool: [ifindex(2),
proto(112), unicast(1), fd(14,15)]

Feb 27 14:42:05 centos7-1 nginx-ha-keepalived: Transition to state ’BACKUP’ on
VRRP instance ’VI_1’.

Feb 27 14:42:05 centos7-1 Keepalived_vrrp[19244]: VRRP_Script(chk_nginx_service
) succeeded

Feb 27 14:42:06 centos7-1 Keepalived_vrrp[19244]: VRRP_Instance(VI_1) forcing a
new MASTER election

Feb 27 14:42:06 centos7-1 Keepalived_vrrp[19244]: VRRP_Instance(VI_1) forcing a
new MASTER election

Feb 27 14:42:07 centos7-1 Keepalived_vrrp[19244]: VRRP_Instance(VI_1)
Transition to MASTER STATE

Feb 27 14:42:08 centos7-1 Keepalived_vrrp[19244]: VRRP_Instance(VI_1) Entering
MASTER STATE

Feb 27 14:42:08 centos7-1 Keepalived_vrrp[19244]: VRRP_Instance(VI_1) setting
protocol VIPs.

Feb 27 14:42:08 centos7-1 Keepalived_vrrp[19244]: VRRP_Instance(VI_1) Sending
gratuitous ARPs on eth0 for 192.168.100.150

Feb 27 14:42:08 centos7-1 nginx-ha-keepalived: Transition to state ’MASTER’ on
VRRP instance ’VI_1’.

Nginx, Inc. p.362 of 379

CHAPTER 5. MISCELLANEOUS 5.1. HIGH AVAILABILITY SUPPORT FOR NGINX PLUS

Feb 27 14:42:13 centos7-1 Keepalived_vrrp[19244]: VRRP_Instance(VI_1) Sending
gratuitous ARPs on eth0 for 192.168.100.150

If the system log does not explain the source of a problem, run the tcpdump
command with the following parameters to display the VRRP advertisements
that are sent on the local network:

tcpdump -vvv -ni eth0 proto vrrp

If you have multiple VRRP instances on the local network and want to
filter the traffic for select hosts, include the host parameter to specify the
IP address that is defined in the unicast_peer block, as in the following
example:

centos7-1 # tcpdump -vvv -ni eth0 proto vrrp and host 192.168.100.101
tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture size 65535

bytes
14:48:27.188100 IP (tos 0xc0, ttl 255, id 382, offset 0, flags [none], proto

VRRP (112), length 40)
192.168.100.100 > 192.168.100.101: vrrp 192.168.100.100 > 192.168.100.101:

VRRPv2, Advertisement, vrid 51, prio 151, authtype simple, intvl 1s,
length 20, addrs: 192.168.100.150 auth "f8f0e511"

Several fields in the output are useful for debugging:

• authtype - the type of authentication in use (authentication
directive)

• vrid - the virtual router ID (virtual_router_id directive)

• prio - the node’s priority (priority directive)

• intvl - the frequency at which advertisements are sent (advert_int
directive)

• auth - the authentication token sent (auth_pass directive)

5.1.8 Miscellaneous

Note that NGINX configuration files on both nodes must define the services
that are being made highly available. Keeping the configuration files in sync
is outside the scope of the provided clustering software.

The nginx-ha-keepalived package comes with numerous configura-
tion examples, in the /usr/share/doc/nginx-ha-keepalived/ direc-
tory. They show how to configure numerous aspects of an HA setup.

Nginx, Inc. p.363 of 379

CHAPTER 5. MISCELLANEOUS 5.2. COMMAND-LINE PARAMETERS

5.2 Command-line parameters

5.2.1 Overview . 364

5.2.1 Overview

nginx supports the following command-line parameters:

• -? | -h — print help for command-line parameters.

• -c file — use an alternative configuration file instead of a default file.

• -g directives — set global configuration directives, for example,

nginx -g "pid /var/run/nginx.pid; worker_processes ‘sysctl -n hw.ncpu‘;"

• -p prefix — set nginx path prefix, i.e. a directory that will keep
server files (default value is /usr/local/nginx).

• -q — suppress non-error messages during configuration testing.

• -s signal — send a signal to the master process. The argument signal
can be one of:

– stop — shut down quickly

– quit — shut down gracefully

– reload — reload configuration, start the new worker process with
a new configuration, gracefully shut down old worker processes.

– reopen — reopen log files

• -t — test the configuration file: nginx checks the configuration for
correct syntax, and then tries to open files referred in the configuration.

• -T — same as -t, but additionally dump configuration files to standard
output (1.9.2).

• -v — print nginx version.

• -V — print nginx version, compiler version, and configure parameters.

Nginx, Inc. p.364 of 379

Appendix A

Changelog for NGINX Plus

This appendix contains the most important changes that may apply to both NGINX Plus
and nginx/OSS. Full changelog for nginx/OSS is available in the packages and by the
following link: http://nginx.org/en/CHANGES

• NGINX Plus R11 (1.11.5), released Oct 25, 2016

– Introduced dynamic modules binary compatibility between NGINX Plus and
corresponding version of nginx/OSS.

– Stream module enhancements (custom logging with a number of additional
variables, PROXY protocol support for incoming connections, support for
obtaining real IP address and port from PROXY protocol header, ability to
extract server name from SNI to a variable for various purposes, e.g. custom
routing).

– Status module dataset updated with additional stream metrics (sessions,
discarded).

– Cache manager improved to support iterative operations mode when deleting
old cache files, reducing the disk load (see the manager_files,
manager_threshold, and manager_sleep parameters of the
proxy cache path directive).

– Added support for using variables in the domain parameter of the sticky
directive.

– New variable: $upstream bytes received.

• NGINX Plus R10 (1.11.3), released Aug 23, 2016

– New dynamic module: ModSecurity (package name is
nginx-plus-module-modsecurity). This is the early release candidate
of ModSecurity 3.0.

– New dynamic module: nginScript (package name is
nginx-plus-module-njs).

– Support for client authorization using the JSON Web Token (JWT).

– Stream module enhancements (embedded variables, resolver support, map
module, geo and geoip modules, A/B testing support).

– Support for multiple SSL certificate types per SSL server or SNI name (e.g.,
RSA and ECDSA).

– Transparent proxy mode support (the transparent parameter of the
proxy bind directive).

– Support for the IP_BIND_ADDRESS_NO_PORT socket option where available,
allowing for many more upstream connections.

– HTTP/2 improvements: unbuffered upload support, general bugfixes.

365

http://nginx.org/en/CHANGES
https://www.nginx.com/modsec-R10/
https://www.nginx.com/nginScript-R10/

APPENDIX A. CHANGELOG FOR NGINX PLUS

– New variables: $request id, $proxy protocol port, $realip remote port.

– Lua module updated to version 0.10.6 (nginx-plus-extras,
nginx-plus-module-lua).

– Passenger module updated to version 5.0.30 (nginx-plus-extras,
nginx-plus-module-passenger).

– headers-more module updated to version 0.31 (nginx-plus-extras,
nginx-plus-module-headers-more).

– set-misc module updated to version 0.31 (nginx-plus-extras,
nginx-plus-module-headers-more).

NGINX Plus R10 will be the last release to provide the NGINX Plus Extras
package. Users should migrate to the NGINX Plus package and use the equivalent
dynamic modules.

• NGINX Plus R9 (1.9.13), released Apr 12, 2016

– Introduced a number of standalone packages with dynamic modules for
NGINX Plus (both official and third-party). Packages with official modules:

∗ nginx-plus-module-geoip (doc)

∗ nginx-plus-module-image-filter (doc)

∗ nginx-plus-module-perl (doc)

∗ nginx-plus-module-xslt (doc)

Packages with third-party modules:

∗ nginx-plus-module-headers-more (site)

∗ nginx-plus-module-lua (site)

∗ nginx-plus-module-passenger (site)

∗ nginx-plus-module-rtmp (site)

∗ nginx-plus-module-set-misc (site)

– UDP proxy support added to the stream module.

– Added support for retrieving upstream servers configuration via DNS SRV
records (the service parameter of the server directive).

– Resolver: added support for TCP fallback on retrieving large DNS responses.

– Change: requests with non-idempotent method (POST, LOCK, PATCH) are not
passed to the next server in upstream group if a request has already been sent
to an upstream server. Enabling the non_idempotent option in the
proxy next upstream directive explicitly allows retrying such requests.

– Cache: improved meta-data accounting.

– Automatic binding of worker processes to available CPUs (the auto
parameter of the worker cpu affinity directive).

– Some write operations can now be offloaded to thread pools.

– Added support for customizing the Server response header field, as well as
the signature in standard error messages.

– Lua module updated to version 0.10.2 (nginx-plus-extras,
nginx-plus-module-lua).

– Passenger module updated to version 5.0.26 (nginx-plus-extras,
nginx-plus-module-passenger).

– headers-more module updated to version 0.29 (nginx-plus-extras,
nginx-plus-module-headers-more).

– Updated status dashboard.

• NGINX Plus R8 (1.9.9), released Dec 29, 2015

Nginx, Inc. p.366 of 379

https://github.com/openresty/headers-more-nginx-module
https://github.com/openresty/lua-nginx-module
https://www.phusionpassenger.com
https://github.com/arut/nginx-rtmp-module
https://github.com/openresty/set-misc-nginx-module
http://tools.ietf.org/html/rfc7231#section-4.2.2

APPENDIX A. CHANGELOG FOR NGINX PLUS

– HTTP/2 support is now included into the nginx-plus and
nginx-plus-extras packages. The nginx-plus-http2 and
nginx-plus-lua packages are deprecated.

– Caching improvements, including support of caching HEAD requests and
more effective caching of big responses with the slice module.

– Dynamically configured upstream groups now can be configured to keep states
between reloads.

– Support for arbitrary port in health check requests (the port parameter of
the health check directive).

– Enhancement in the real IP module: the $realip remote addr variable.

– Enhancement in syslog logging: the nohostname parameter.

– Lua module updated to version 0.9.20 (nginx-plus-extras).

– The lua-resty-redis Lua module updated to version 0.21
(nginx-plus-extras).

– Passenger module updated to version 5.0.22 (nginx-plus-extras).

– headers-more module updated to version 0.28 (nginx-plus-extras).

– Updated status dashboard.

• NGINX Plus R7 (1.9.4), released Sep 15, 2015

– Introduced separate family of nginx-plus-http2 packages with HTTP/2
support included in favor of SPDY. General nginx-plus packages still have
SPDY support. Please refer to the listen directive documentation for the
instructions on how to enable HTTP/2.

– TCP proxy enhancements (access control; connection limiting; upload and
download bandwidth control; client-side PROXY protocol support; ability to
choose local IP address for outgoing connections; the backlog parameter of
the listen directive; the tcp nodelay directive).

– More efficient connections distribution between worker processes (the
reuseport parameter of the listen directive).

– Introduced thread pools used for multi-threaded reading and sending files
without blocking worker processes.

– Enhanced support for modifying HTTP responses (multiple substitutions
support, variables support in search strings).

– A number of additional metrics in the new version (6) of the status dataset
(SSL handshakes and upstream queue overflows in particular).

– Updated status dashboard.

– Additional arguments to playlists in the HLS module (start, end and
offset).

– Support for proxying requests with NTLM authentication.

– New command-line switch to dump configuration to standard output: -T.

– Added lua-resty-redis Lua module (nginx-plus-extras).

– Lua module updated to version 0.9.16 (nginx-plus-lua,
nginx-plus-extras).

– Passenger module updated to version 5.0.15 (nginx-plus-extras).

– headers-more module updated to version 0.26 (nginx-plus-extras).

– set-misc module updated to version 0.29 (nginx-plus-extras).

• NGINX Plus R6 (1.7.11), released Apr 14, 2015

– TCP proxy enhancements (health checks, dynamic reconfiguration, SSL
support, logging, status counters).

Nginx, Inc. p.367 of 379

APPENDIX A. CHANGELOG FOR NGINX PLUS

– New least time load balancing method.

– Unbuffered upload support (proxy request buffering and friends).

– Proxy SSL authentication support for http and uwsgi.

– Proxy cache enhancements (variables support in proxy cache,
use_temp_path parameter in proxy cache path).

– Client SSL certificates support in mail proxy.

– Autoindex module enhancement (the autoindex format directive).

– New status dashboard.

– Lua module updated to version 0.9.16rc1 (nginx-plus-lua,
nginx-plus-extras).

– Passenger module updated to version 4.0.59 (nginx-plus-extras).

– set-misc module updated to version 0.28 (nginx-plus-extras).

• NGINX Plus R5 (1.7.7), released Dec 1, 2014

– New TCP proxying and load balancing mode (the stream module).

– Sticky session timeout now applies from the most recent request in the session.

– Upstream “draining” can be used to remove an upstream server without
interrupting any user sessions (the drain command of the upstream conf
dynamic configuration interface).

– Improved control over request retries in the event of failure, based on number
of tries and time. Also available for fastcgi, uwsgi, scgi and memcached
modules.

– Caching: the Vary response header is correctly handled (multiple variants of
the same resource can be cached). Note that the on-disk cache format has
changed, so cached content will be invalidated after the upgrade.

– Caching: improved support for byte-range requests.

– Ability to control upstream bandwidth with the proxy limit rate directive.

– Lua module updated to version 0.9.13 (nginx-plus-lua,
nginx-plus-extras).

– Passenger module updated to version 4.0.53 (nginx-plus-extras).

• NGINX Plus R4 (1.7.3), released Jul 22, 2014

– MP4 module now supports the end query argument which sets the end point
of playback.

– Added the ability to verify backend SSL certificates.

– Added support for SNI while working with SSL backends.

– Added conditional logging for requests (the if parameter of the access log
directive).

– New load balancing method based on user-defined keys with optional
consistency.

– Cache revalidation now uses If-None-Match header if possible.

– Passphrases for SSL private keys can now be stored in an external file.

– Introduced a new session affinity mechanism (sticky learn) based on
server-initiated sessions.

– Added the ability to retrieve a subset of the extended status data.

– Lua module updated to version 0.9.10 (nginx-plus-lua,
nginx-plus-extras).

– Passenger module updated to version 4.0.45 (nginx-plus-extras).

Nginx, Inc. p.368 of 379

APPENDIX A. CHANGELOG FOR NGINX PLUS

• NGINX Plus R3 (1.5.12), released Apr 2, 2014

– SPDY protocol updated to version 3.1. SPDY/2 is no longer supported.

– Added PROXY protocol support (the proxy_protocol parameter of the
listen directive).

– IPv6 support added to resolver.

– DNS names in upstream groups are periodically re-resolved (the resolve
parameter of the server directive).

– Introduced limiting connections to upstream servers (the max_conns
parameter) with optional support for connections queue.

• NGINX Plus R2 (1.5.7), released Dec 12, 2013

– Enhanced sticky routing support.

– Additional status metrics for virtual hosts and cache zones.

– Cache purge support (also available for FastCGI).

– Added support for cache revalidation.

– New module: ngx http auth request module (authorization based on the
result of a subrequest).

• NGINX Plus R1 (1.5.3), released Aug 12, 2013

– Enhanced status monitoring.

– Load balancing: slow start feature.

– Added syslog support for both error log and access log.

– Support for Apple HTTP Live Streaming.

• NGINX Plus 1.5.0-2, released May 27, 2013

– Added support for active healthchecks.

• NGINX Plus 1.5.0, released May 7, 2013

– Security: fixed CVE-2013-2028.

• NGINX Plus 1.3.16, released Apr 19, 2013

– Added SPDY support.

• NGINX Plus 1.3.13, released Feb 22, 2013

– Added sticky sessions support.

– Added support for proxying WebSocket connections.

• NGINX Plus 1.3.11, released Jan 18, 2013

– Added base module ngx http gunzip module.

– New extra module: ngx http f4f module (Adobe HDS Dynamic Streaming).

– New extra module: ngx http session log module (aggregated session logging).

• NGINX Plus 1.3.9-2, released Dec 20, 2012

– License information updated.

– End-User License Agreement added to the package.

• NGINX Plus 1.3.9, released Nov 27, 2012

– Added dynamic upstream management feature.

– PDF documentation bundled into package.

• NGINX Plus 1.3.7, released Oct 18, 2012

– Initial release of NGINX Plus package.

Nginx, Inc. p.369 of 379

http://haproxy.1wt.eu/download/1.5/doc/proxy-protocol.txt

Appendix B

Legal Notices

Open source components included in the NGINX Plus (package name is nginx-plus) are:

• nginx/OSS (1.11.5), distributed under 2-clause BSD license.

http://nginx.org/

Copyright © 2002-2016 Igor Sysoev

Copyright © 2011-2016 Nginx, Inc.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

• Internal MD5 implementation (used only if no system MD5 support was found),
based on Alexander Peslyak’s public domain implementation:

This is an OpenSSL-compatible implementation of the RSA Data Security, Inc.
MD5 Message-Digest Algorithm (RFC 1321).

Homepage:
http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5

Author: Alexander Peslyak, better known as Solar Designer <solar at
openwall.com>

This software was written by Alexander Peslyak in 2001. No copyright is claimed,
and the software is hereby placed in the public domain. In case this attempt to
disclaim copyright and place the software in the public domain is deemed null and
void, then the software is Copyright © 2001 Alexander Peslyak and it is hereby
released to the general public under the following terms:

370

http://nginx.org/
http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5

APPENDIX B. LEGAL NOTICES

1. Redistribution and use in source and binary forms, with or without
modification, are permitted.

2. There’s ABSOLUTELY NO WARRANTY, express or implied.

(This is a heavily cut-down ”BSD license”.)

• MurmurHash algorithm (version 2), distributed under MIT license.

https://sites.google.com/site/murmurhash/

Copyright © Austin Appleby

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the ”Software”), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

The following components (Ractive.js, opentip, Reset CSS, Web Font Loader) are used in
status monitoring dashboard only:

• Ractive.js JavaScript library (0.7.3), distributed under MIT license.

http://www.ractivejs.org/

Copyright © 2012-14 Rich Harris and contributors

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the ”Software”), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to the following
conditions:

– The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

• opentip JavaScript tooltip framework (2.4.6), distributed under MIT license.

http://www.opentip.org/

Copyright © 2009-2012, Matias Meno

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the ”Software”), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to the following
conditions:

Nginx, Inc. p.371 of 379

https://sites.google.com/site/murmurhash/
http://www.ractivejs.org/
http://www.opentip.org/

APPENDIX B. LEGAL NOTICES

– The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

• Reset CSS (v2), distributed under public domain.

http://meyerweb.com/eric/tools/css/reset/

Copyright © 1995-2015, Eric A. and Kathryn S. Meyer

• Web Font Loader (1.6.26), distributed under Apache 2.0 license.

https://github.com/typekit/webfontloader/

Web Font Loader Copyright (c) 2010 Adobe Systems Incorporated, Google
Incorporated.

Licensed under the Apache License, Version 2.0 (the ”License”); you may not use this
file except in compliance with the License. You may obtain a copy of the License at:

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an ”AS IS” BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

Optional add-on and third-party modules provided with NGINX Plus may include
additional open-source components. The licenses for these components are included in the
installation package for each module.

Nginx, Inc. p.372 of 379

http://meyerweb.com/eric/tools/css/reset/
https://github.com/typekit/webfontloader/
http://www.apache.org/licenses/LICENSE-2.0

Index

accept mutex, 7
accept mutex delay, 7
access log, 126, 303
add after body, 58
add before body, 58
add header, 110
addition types, 59
aio, 21
aio write, 22
alias, 22
allow, 56, 295
ancient browser, 69
ancient browser value, 69
auth basic, 60
auth basic user file, 60
auth http, 341
auth http header, 341
auth http pass client cert, 341
auth http timeout, 341
auth jwt, 62
auth jwt key file, 63
auth request, 64
auth request set, 65
autoindex, 66
autoindex exact size, 66
autoindex format, 66
autoindex localtime, 67

break, 179

charset, 70
charset map, 71
charset types, 72
chunked transfer encoding, 23
client body buffer size, 23
client body in file only, 23
client body in single buffer, 24
client body temp path, 24
client body timeout, 24
client header buffer size, 24

client header timeout, 25
client max body size, 25
connection pool size, 25
create full put path, 74

daemon, 7
dav access, 73
dav methods, 74
debug connection, 8
debug points, 8
default type, 25
deny, 56, 295
directio, 25
directio alignment, 26
disable symlinks, 26

empty gif, 76
env, 9
error log, 8
error page, 27
etag, 28
events, 10
expires, 110

f4f, 77
f4f buffer size, 77
fastcgi bind, 79
fastcgi buffer size, 80
fastcgi buffering, 80
fastcgi buffers, 80
fastcgi busy buffers size, 80
fastcgi cache, 81
fastcgi cache bypass, 81
fastcgi cache key, 81
fastcgi cache lock, 81
fastcgi cache lock age, 82
fastcgi cache lock timeout, 82
fastcgi cache methods, 82
fastcgi cache min uses, 82
fastcgi cache path, 83

373

INDEX INDEX

fastcgi cache purge, 84
fastcgi cache revalidate, 85
fastcgi cache use stale, 85
fastcgi cache valid, 85
fastcgi catch stderr, 86
fastcgi connect timeout, 87
fastcgi force ranges, 87
fastcgi hide header, 87
fastcgi ignore client abort, 87
fastcgi ignore headers, 88
fastcgi index, 88
fastcgi intercept errors, 88
fastcgi keep conn, 89
fastcgi limit rate, 89
fastcgi max temp file size, 89
fastcgi next upstream, 89
fastcgi next upstream timeout, 90
fastcgi next upstream tries, 91
fastcgi no cache, 91
fastcgi param, 91
fastcgi pass, 92
fastcgi pass header, 92
fastcgi pass request body, 92
fastcgi pass request headers, 93
fastcgi read timeout, 93
fastcgi request buffering, 93
fastcgi send lowat, 93
fastcgi send timeout, 93
fastcgi split path info, 94
fastcgi store, 94
fastcgi store access, 95
fastcgi temp file write size, 95
fastcgi temp path, 95
flv, 97

geo, 98, 296
geoip city, 102, 299
geoip country, 101, 298
geoip org, 103, 300
geoip proxy, 103
geoip proxy recursive, 103
gunzip, 104
gunzip buffers, 104
gzip, 105
gzip buffers, 105
gzip comp level, 106
gzip disable, 106

gzip http version, 106
gzip min length, 106
gzip proxied, 107
gzip static, 109
gzip types, 107
gzip vary, 108

hash, 242, 331
health check, 246, 332
health check timeout, 333
hls, 113
hls buffers, 113
hls forward args, 113
hls fragment, 114
hls mp4 buffer size, 114
hls mp4 max buffer size, 115
http, 28
http2 body preread size, 282
http2 chunk size, 282
http2 idle timeout, 282
http2 max concurrent streams, 282
http2 max field size, 282
http2 max header size, 283
http2 recv buffer size, 283
http2 recv timeout, 283

if, 180
if modified since, 28
ignore invalid headers, 29
image filter, 116
image filter buffer, 117
image filter interlace, 117
image filter jpeg quality, 118
image filter sharpen, 118
image filter transparency, 118
imap auth, 355
imap capabilities, 355
imap client buffer, 355
include, 10
index, 119
internal, 29
ip hash, 243

keepalive, 243
keepalive disable, 30
keepalive requests, 30
keepalive timeout, 30

Nginx, Inc. p.374 of 379

INDEX INDEX

large client header buffers, 31
least conn, 246, 332
least time, 246, 332
limit conn, 120, 301
limit conn log level, 121, 302
limit conn status, 121
limit conn zone, 121, 302
limit except, 31
limit rate, 31
limit rate after, 32
limit req, 123
limit req log level, 124
limit req status, 124
limit req zone, 125
limit zone, 122
lingering close, 32
lingering time, 32
lingering timeout, 33
listen, 33, 288, 337
load module, 10
location, 36
lock file, 10
log format, 128, 304
log not found, 38
log subrequest, 38

mail, 338
map, 130, 306
map hash bucket size, 132, 307
map hash max size, 132, 308
master process, 11
match, 248, 333
max ranges, 38
memcached bind, 133
memcached buffer size, 134
memcached connect timeout, 134
memcached force ranges, 134
memcached gzip flag, 134
memcached next upstream, 135
memcached next upstream timeout,

135
memcached next upstream tries, 136
memcached pass, 136
memcached read timeout, 136
memcached send timeout, 136
merge slashes, 38
min delete depth, 74

modern browser, 69
modern browser value, 69
mp4, 139
mp4 buffer size, 139
mp4 limit rate, 140
mp4 limit rate after, 140
mp4 max buffer size, 139
msie padding, 39
msie refresh, 39
multi accept, 11

ntlm, 245

open file cache, 39
open file cache errors, 40
open file cache min uses, 40
open file cache valid, 40
open log file cache, 129, 304
output buffers, 40
override charset, 72

pcre jit, 11
perl, 142
perl modules, 143
perl require, 143
perl set, 143
pid, 11
pop3 auth, 356
pop3 capabilities, 356
port in redirect, 41
postpone output, 41
preread buffer size, 290
preread timeout, 290
protocol, 339
proxy bind, 148, 310
proxy buffer, 345
proxy buffer size, 149, 310
proxy buffering, 149
proxy buffers, 150
proxy busy buffers size, 150
proxy cache, 150
proxy cache bypass, 150
proxy cache convert head, 151
proxy cache key, 151
proxy cache lock, 151
proxy cache lock age, 151
proxy cache lock timeout, 152

Nginx, Inc. p.375 of 379

INDEX INDEX

proxy cache methods, 152
proxy cache min uses, 152
proxy cache path, 152
proxy cache purge, 154
proxy cache revalidate, 154
proxy cache use stale, 155
proxy cache valid, 155
proxy connect timeout, 156, 310
proxy cookie domain, 156
proxy cookie path, 157
proxy download rate, 311
proxy force ranges, 158
proxy headers hash bucket size, 158
proxy headers hash max size, 158
proxy hide header, 158
proxy http version, 159
proxy ignore client abort, 159
proxy ignore headers, 159
proxy intercept errors, 159
proxy limit rate, 160
proxy max temp file size, 160
proxy method, 160
proxy next upstream, 161, 311
proxy next upstream timeout, 162,

311
proxy next upstream tries, 162, 311
proxy no cache, 162
proxy pass, 162, 311
proxy pass error message, 345
proxy pass header, 164
proxy pass request body, 164
proxy pass request headers, 164
proxy protocol, 312
proxy protocol timeout, 290
proxy read timeout, 165
proxy redirect, 165
proxy request buffering, 166
proxy responses, 312
proxy send lowat, 167
proxy send timeout, 167
proxy set body, 167
proxy set header, 167
proxy ssl, 312
proxy ssl certificate, 168, 312
proxy ssl certificate key, 168, 313
proxy ssl ciphers, 169, 313

proxy ssl crl, 169, 313
proxy ssl name, 169, 313
proxy ssl password file, 169, 313
proxy ssl protocols, 170, 314
proxy ssl server name, 170, 314
proxy ssl session reuse, 170, 314
proxy ssl trusted certificate, 170, 314
proxy ssl verify, 170, 314
proxy ssl verify depth, 171, 315
proxy store, 171
proxy store access, 172
proxy temp file write size, 172
proxy temp path, 172
proxy timeout, 315, 345
proxy upload rate, 315

queue, 249

random index, 174
read ahead, 41
real ip header, 175
real ip recursive, 176
recursive error pages, 41
referer hash bucket size, 177
referer hash max size, 177
request pool size, 41
reset timedout connection, 42
resolver, 42, 290, 339
resolver timeout, 43, 291, 340
return, 181, 317
rewrite, 181
rewrite log, 183
root, 43

satisfy, 43
scgi bind, 186
scgi buffer size, 186
scgi buffering, 187
scgi buffers, 187
scgi busy buffers size, 187
scgi cache, 187
scgi cache bypass, 188
scgi cache key, 188
scgi cache lock, 188
scgi cache lock age, 188
scgi cache lock timeout, 189
scgi cache methods, 189

Nginx, Inc. p.376 of 379

INDEX INDEX

scgi cache min uses, 189
scgi cache path, 189
scgi cache purge, 191
scgi cache revalidate, 192
scgi cache use stale, 192
scgi cache valid, 192
scgi connect timeout, 193
scgi force ranges, 193
scgi hide header, 193
scgi ignore client abort, 194
scgi ignore headers, 194
scgi intercept errors, 194
scgi limit rate, 195
scgi max temp file size, 195
scgi next upstream, 195
scgi next upstream timeout, 196
scgi next upstream tries, 196
scgi no cache, 197
scgi param, 197
scgi pass, 197
scgi pass header, 198
scgi pass request body, 198
scgi pass request headers, 198
scgi read timeout, 198
scgi request buffering, 198
scgi send timeout, 199
scgi store, 199
scgi store access, 200
scgi temp file write size, 200
scgi temp path, 200
secure link, 202
secure link md5, 203
secure link secret, 203
send lowat, 44
send timeout, 44
sendfile, 44
sendfile max chunk, 45
server, 45, 239, 291, 328, 340
server name, 45, 340
server name in redirect, 47
server names hash bucket size, 47
server names hash max size, 47
server tokens, 48
session log, 206
session log format, 205
session log zone, 205

set, 183
set real ip from, 175, 316
slice, 207
smtp auth, 357
smtp capabilities, 357
source charset, 72
split clients, 209, 318
ssi, 210
ssi last modified, 210
ssi min file chunk, 211
ssi silent errors, 211
ssi types, 211
ssi value length, 211
ssl, 216, 348
ssl buffer size, 216
ssl certificate, 217, 320, 348
ssl certificate key, 217, 320, 349
ssl ciphers, 218, 320, 349
ssl client certificate, 218, 349
ssl crl, 218, 349
ssl dhparam, 218, 321, 350
ssl ecdh curve, 219, 321, 350
ssl engine, 11
ssl handshake timeout, 321
ssl password file, 219, 321, 350
ssl prefer server ciphers, 219, 322, 351
ssl preread, 325
ssl protocols, 220, 322, 351
ssl session cache, 220, 322, 351
ssl session ticket key, 221, 323, 352
ssl session tickets, 221, 323, 352
ssl session timeout, 221, 323, 352
ssl stapling, 221
ssl stapling file, 222
ssl stapling responder, 222
ssl stapling verify, 222
ssl trusted certificate, 222, 353
ssl verify client, 223, 353
ssl verify depth, 223, 353
starttls, 353
state, 242, 331
status, 226
status format, 226
status zone, 227
sticky, 250
sticky cookie insert, 252

Nginx, Inc. p.377 of 379

INDEX INDEX

stream, 291
stub status, 234
sub filter, 236
sub filter last modified, 236
sub filter once, 237
sub filter types, 237

tcp nodelay, 48, 292
tcp nopush, 48
thread pool, 12
timeout, 340
timer resolution, 12
try files, 48
types, 50
types hash bucket size, 51
types hash max size, 51

underscores in headers, 51
uninitialized variable warn, 183
upstream, 239, 328
upstream conf, 254
use, 12
user, 13
userid, 258
userid domain, 259
userid expires, 259
userid mark, 259
userid name, 259
userid p3p, 260
userid path, 260
userid service, 260
uwsgi bind, 262
uwsgi buffer size, 263
uwsgi buffering, 263
uwsgi buffers, 263
uwsgi busy buffers size, 264
uwsgi cache, 264
uwsgi cache bypass, 264
uwsgi cache key, 264
uwsgi cache lock, 265
uwsgi cache lock age, 265
uwsgi cache lock timeout, 265
uwsgi cache methods, 265
uwsgi cache min uses, 266
uwsgi cache path, 266
uwsgi cache purge, 267
uwsgi cache revalidate, 268

uwsgi cache use stale, 268
uwsgi cache valid, 269
uwsgi connect timeout, 269
uwsgi force ranges, 270
uwsgi hide header, 270
uwsgi ignore client abort, 270
uwsgi ignore headers, 270
uwsgi intercept errors, 271
uwsgi limit rate, 271
uwsgi max temp file size, 271
uwsgi modifier1, 272
uwsgi modifier2, 272
uwsgi next upstream, 272
uwsgi next upstream timeout, 273
uwsgi next upstream tries, 273
uwsgi no cache, 273
uwsgi param, 274
uwsgi pass, 274
uwsgi pass header, 274
uwsgi pass request body, 275
uwsgi pass request headers, 275
uwsgi read timeout, 275
uwsgi request buffering, 275
uwsgi send timeout, 276
uwsgi ssl certificate, 276
uwsgi ssl certificate key, 276
uwsgi ssl ciphers, 276
uwsgi ssl crl, 276
uwsgi ssl name, 277
uwsgi ssl password file, 277
uwsgi ssl protocols, 277
uwsgi ssl server name, 277
uwsgi ssl session reuse, 278
uwsgi ssl trusted certificate, 278
uwsgi ssl verify, 278
uwsgi ssl verify depth, 278
uwsgi store, 278
uwsgi store access, 279
uwsgi temp file write size, 279
uwsgi temp path, 280

valid referers, 178
variables hash bucket size, 51, 292
variables hash max size, 52, 292

worker aio requests, 13
worker connections, 13

Nginx, Inc. p.378 of 379

INDEX INDEX

worker cpu affinity, 13
worker priority, 14
worker processes, 14
worker rlimit core, 15
worker rlimit nofile, 15
working directory, 15

xclient, 346
xml entities, 284
xslt last modified, 285
xslt param, 285
xslt string param, 285
xslt stylesheet, 285
xslt types, 286

zone, 242, 330

Nginx, Inc. p.379 of 379

	Title
	Preface
	Table of Contents
	Core modules
	Core functionality
	Example Configuration
	Directives
	accept_mutex
	accept_mutex_delay
	daemon
	debug_connection
	debug_points
	error_log
	env
	events
	include
	load_module
	lock_file
	master_process
	multi_accept
	pcre_jit
	pid
	ssl_engine
	thread_pool
	timer_resolution
	use
	user
	worker_aio_requests
	worker_connections
	worker_cpu_affinity
	worker_priority
	worker_processes
	worker_rlimit_core
	worker_rlimit_nofile
	working_directory

	Setting up hashes
	Overview

	Connection processing methods
	Overview

	Logging to syslog
	Overview

	HTTP server modules
	Module ngx_http_core_module
	Directives
	aio
	aio_write
	alias
	chunked_transfer_encoding
	client_body_buffer_size
	client_body_in_file_only
	client_body_in_single_buffer
	client_body_temp_path
	client_body_timeout
	client_header_buffer_size
	client_header_timeout
	client_max_body_size
	connection_pool_size
	default_type
	directio
	directio_alignment
	disable_symlinks
	error_page
	etag
	http
	if_modified_since
	ignore_invalid_headers
	internal
	keepalive_disable
	keepalive_requests
	keepalive_timeout
	large_client_header_buffers
	limit_except
	limit_rate
	limit_rate_after
	lingering_close
	lingering_time
	lingering_timeout
	listen
	location
	log_not_found
	log_subrequest
	max_ranges
	merge_slashes
	msie_padding
	msie_refresh
	open_file_cache
	open_file_cache_errors
	open_file_cache_min_uses
	open_file_cache_valid
	output_buffers
	port_in_redirect
	postpone_output
	read_ahead
	recursive_error_pages
	request_pool_size
	reset_timedout_connection
	resolver
	resolver_timeout
	root
	satisfy
	send_lowat
	send_timeout
	sendfile
	sendfile_max_chunk
	server
	server_name
	server_name_in_redirect
	server_names_hash_bucket_size
	server_names_hash_max_size
	server_tokens
	tcp_nodelay
	tcp_nopush
	try_files
	types
	types_hash_bucket_size
	types_hash_max_size
	underscores_in_headers
	variables_hash_bucket_size
	variables_hash_max_size

	Embedded Variables

	Module ngx_http_access_module
	Summary
	Example Configuration
	Directives
	allow
	deny

	Module ngx_http_addition_module
	Summary
	Example Configuration
	Directives
	add_before_body
	add_after_body
	addition_types

	Module ngx_http_auth_basic_module
	Summary
	Example Configuration
	Directives
	auth_basic
	auth_basic_user_file

	Module ngx_http_auth_jwt_module
	Summary
	Example Configuration
	Directives
	auth_jwt
	auth_jwt_key_file

	Embedded Variables

	Module ngx_http_auth_request_module
	Summary
	Example Configuration
	Directives
	auth_request
	auth_request_set

	Module ngx_http_autoindex_module
	Summary
	Example Configuration
	Directives
	autoindex
	autoindex_exact_size
	autoindex_format
	autoindex_localtime

	Module ngx_http_browser_module
	Summary
	Example Configuration
	Directives
	ancient_browser
	ancient_browser_value
	modern_browser
	modern_browser_value

	Module ngx_http_charset_module
	Summary
	Example Configuration
	Directives
	charset
	charset_map
	charset_types
	override_charset
	source_charset

	Module ngx_http_dav_module
	Summary
	Example Configuration
	Directives
	dav_access
	dav_methods
	create_full_put_path
	min_delete_depth

	Module ngx_http_empty_gif_module
	Summary
	Example Configuration
	Directives
	empty_gif

	Module ngx_http_f4f_module
	Summary
	Example Configuration
	Directives
	f4f
	f4f_buffer_size

	Module ngx_http_fastcgi_module
	Summary
	Example Configuration
	Directives
	fastcgi_bind
	fastcgi_buffer_size
	fastcgi_buffering
	fastcgi_buffers
	fastcgi_busy_buffers_size
	fastcgi_cache
	fastcgi_cache_bypass
	fastcgi_cache_key
	fastcgi_cache_lock
	fastcgi_cache_lock_age
	fastcgi_cache_lock_timeout
	fastcgi_cache_methods
	fastcgi_cache_min_uses
	fastcgi_cache_path
	fastcgi_cache_purge
	fastcgi_cache_revalidate
	fastcgi_cache_use_stale
	fastcgi_cache_valid
	fastcgi_catch_stderr
	fastcgi_connect_timeout
	fastcgi_force_ranges
	fastcgi_hide_header
	fastcgi_ignore_client_abort
	fastcgi_ignore_headers
	fastcgi_index
	fastcgi_intercept_errors
	fastcgi_keep_conn
	fastcgi_limit_rate
	fastcgi_max_temp_file_size
	fastcgi_next_upstream
	fastcgi_next_upstream_timeout
	fastcgi_next_upstream_tries
	fastcgi_no_cache
	fastcgi_param
	fastcgi_pass
	fastcgi_pass_header
	fastcgi_pass_request_body
	fastcgi_pass_request_headers
	fastcgi_read_timeout
	fastcgi_request_buffering
	fastcgi_send_lowat
	fastcgi_send_timeout
	fastcgi_split_path_info
	fastcgi_store
	fastcgi_store_access
	fastcgi_temp_file_write_size
	fastcgi_temp_path

	Parameters Passed to a FastCGI Server
	Embedded Variables

	Module ngx_http_flv_module
	Summary
	Example Configuration
	Directives
	flv

	Module ngx_http_geo_module
	Summary
	Example Configuration
	Directives
	geo

	Module ngx_http_geoip_module
	Summary
	Example Configuration
	Directives
	geoip_country
	geoip_city
	geoip_org
	geoip_proxy
	geoip_proxy_recursive

	Module ngx_http_gunzip_module
	Summary
	Example Configuration
	Directives
	gunzip
	gunzip_buffers

	Module ngx_http_gzip_module
	Summary
	Example Configuration
	Directives
	gzip
	gzip_buffers
	gzip_comp_level
	gzip_disable
	gzip_min_length
	gzip_http_version
	gzip_proxied
	gzip_types
	gzip_vary

	Embedded Variables

	Module ngx_http_gzip_static_module
	Summary
	Example Configuration
	Directives
	gzip_static

	Module ngx_http_headers_module
	Summary
	Example Configuration
	Directives
	add_header
	expires

	Module ngx_http_hls_module
	Summary
	Example Configuration
	Directives
	hls
	hls_buffers
	hls_forward_args
	hls_fragment
	hls_mp4_buffer_size
	hls_mp4_max_buffer_size

	Module ngx_http_image_filter_module
	Summary
	Example Configuration
	Directives
	image_filter
	image_filter_buffer
	image_filter_interlace
	image_filter_jpeg_quality
	image_filter_sharpen
	image_filter_transparency

	Module ngx_http_index_module
	Summary
	Example Configuration
	Directives
	index

	Module ngx_http_limit_conn_module
	Summary
	Example Configuration
	Directives
	limit_conn
	limit_conn_log_level
	limit_conn_status
	limit_conn_zone
	limit_zone

	Module ngx_http_limit_req_module
	Summary
	Example Configuration
	Directives
	limit_req
	limit_req_log_level
	limit_req_status
	limit_req_zone

	Module ngx_http_log_module
	Summary
	Example Configuration
	Directives
	access_log
	log_format
	open_log_file_cache

	Module ngx_http_map_module
	Summary
	Example Configuration
	Directives
	map
	map_hash_bucket_size
	map_hash_max_size

	Module ngx_http_memcached_module
	Summary
	Example Configuration
	Directives
	memcached_bind
	memcached_buffer_size
	memcached_connect_timeout
	memcached_force_ranges
	memcached_gzip_flag
	memcached_next_upstream
	memcached_next_upstream_timeout
	memcached_next_upstream_tries
	memcached_pass
	memcached_read_timeout
	memcached_send_timeout

	Embedded Variables

	Module ngx_http_mp4_module
	Summary
	Example Configuration
	Directives
	mp4
	mp4_buffer_size
	mp4_max_buffer_size
	mp4_limit_rate
	mp4_limit_rate_after

	Module ngx_http_perl_module
	Summary
	Known Issues
	Example Configuration
	Directives
	perl
	perl_modules
	perl_require
	perl_set

	Calling Perl from SSI
	The $r Request Object Methods

	Module ngx_http_proxy_module
	Summary
	Example Configuration
	Directives
	proxy_bind
	proxy_buffer_size
	proxy_buffering
	proxy_buffers
	proxy_busy_buffers_size
	proxy_cache
	proxy_cache_bypass
	proxy_cache_convert_head
	proxy_cache_key
	proxy_cache_lock
	proxy_cache_lock_age
	proxy_cache_lock_timeout
	proxy_cache_methods
	proxy_cache_min_uses
	proxy_cache_path
	proxy_cache_purge
	proxy_cache_revalidate
	proxy_cache_use_stale
	proxy_cache_valid
	proxy_connect_timeout
	proxy_cookie_domain
	proxy_cookie_path
	proxy_force_ranges
	proxy_headers_hash_bucket_size
	proxy_headers_hash_max_size
	proxy_hide_header
	proxy_http_version
	proxy_ignore_client_abort
	proxy_ignore_headers
	proxy_intercept_errors
	proxy_limit_rate
	proxy_max_temp_file_size
	proxy_method
	proxy_next_upstream
	proxy_next_upstream_timeout
	proxy_next_upstream_tries
	proxy_no_cache
	proxy_pass
	proxy_pass_header
	proxy_pass_request_body
	proxy_pass_request_headers
	proxy_read_timeout
	proxy_redirect
	proxy_request_buffering
	proxy_send_lowat
	proxy_send_timeout
	proxy_set_body
	proxy_set_header
	proxy_ssl_certificate
	proxy_ssl_certificate_key
	proxy_ssl_ciphers
	proxy_ssl_crl
	proxy_ssl_name
	proxy_ssl_password_file
	proxy_ssl_server_name
	proxy_ssl_session_reuse
	proxy_ssl_protocols
	proxy_ssl_trusted_certificate
	proxy_ssl_verify
	proxy_ssl_verify_depth
	proxy_store
	proxy_store_access
	proxy_temp_file_write_size
	proxy_temp_path

	Embedded Variables

	Module ngx_http_random_index_module
	Summary
	Example Configuration
	Directives
	random_index

	Module ngx_http_realip_module
	Summary
	Example Configuration
	Directives
	set_real_ip_from
	real_ip_header
	real_ip_recursive

	Embedded Variables

	Module ngx_http_referer_module
	Summary
	Example Configuration
	Directives
	referer_hash_bucket_size
	referer_hash_max_size
	valid_referers

	Embedded Variables

	Module ngx_http_rewrite_module
	Summary
	Directives
	break
	if
	return
	rewrite
	rewrite_log
	set
	uninitialized_variable_warn

	Internal Implementation

	Module ngx_http_scgi_module
	Summary
	Example Configuration
	Directives
	scgi_bind
	scgi_buffer_size
	scgi_buffering
	scgi_buffers
	scgi_busy_buffers_size
	scgi_cache
	scgi_cache_bypass
	scgi_cache_key
	scgi_cache_lock
	scgi_cache_lock_age
	scgi_cache_lock_timeout
	scgi_cache_methods
	scgi_cache_min_uses
	scgi_cache_path
	scgi_cache_purge
	scgi_cache_revalidate
	scgi_cache_use_stale
	scgi_cache_valid
	scgi_connect_timeout
	scgi_force_ranges
	scgi_hide_header
	scgi_ignore_client_abort
	scgi_ignore_headers
	scgi_intercept_errors
	scgi_limit_rate
	scgi_max_temp_file_size
	scgi_next_upstream
	scgi_next_upstream_timeout
	scgi_next_upstream_tries
	scgi_no_cache
	scgi_param
	scgi_pass
	scgi_pass_header
	scgi_pass_request_body
	scgi_pass_request_headers
	scgi_read_timeout
	scgi_request_buffering
	scgi_send_timeout
	scgi_store
	scgi_store_access
	scgi_temp_file_write_size
	scgi_temp_path

	Module ngx_http_secure_link_module
	Summary
	Directives
	secure_link
	secure_link_md5
	secure_link_secret

	Embedded Variables

	Module ngx_http_session_log_module
	Summary
	Example Configuration
	Directives
	session_log_format
	session_log_zone
	session_log

	Embedded Variables

	Module ngx_http_slice_module
	Summary
	Example Configuration
	Directives
	slice

	Embedded Variables

	Module ngx_http_split_clients_module
	Summary
	Example Configuration
	Directives
	split_clients

	Module ngx_http_ssi_module
	Summary
	Example Configuration
	Directives
	ssi
	ssi_last_modified
	ssi_min_file_chunk
	ssi_silent_errors
	ssi_types
	ssi_value_length

	SSI Commands
	Embedded Variables

	Module ngx_http_ssl_module
	Summary
	Example Configuration
	Directives
	ssl
	ssl_buffer_size
	ssl_certificate
	ssl_certificate_key
	ssl_ciphers
	ssl_client_certificate
	ssl_crl
	ssl_dhparam
	ssl_ecdh_curve
	ssl_password_file
	ssl_prefer_server_ciphers
	ssl_protocols
	ssl_session_cache
	ssl_session_ticket_key
	ssl_session_tickets
	ssl_session_timeout
	ssl_stapling
	ssl_stapling_file
	ssl_stapling_responder
	ssl_stapling_verify
	ssl_trusted_certificate
	ssl_verify_client
	ssl_verify_depth

	Error Processing
	Embedded Variables

	Module ngx_http_status_module
	Summary
	Example Configuration
	Directives
	status
	status_format
	status_zone

	Data
	Compatibility

	Module ngx_http_stub_status_module
	Summary
	Example Configuration
	Directives
	stub_status

	Data
	Embedded Variables

	Module ngx_http_sub_module
	Summary
	Example Configuration
	Directives
	sub_filter
	sub_filter_last_modified
	sub_filter_once
	sub_filter_types

	Module ngx_http_upstream_module
	Summary
	Example Configuration
	Directives
	upstream
	server
	zone
	state
	hash
	ip_hash
	keepalive
	ntlm
	least_conn
	least_time
	health_check
	match
	queue
	sticky
	sticky_cookie_insert

	Embedded Variables

	Module ngx_http_upstream_conf_module
	Summary
	Example Configuration
	Directives
	upstream_conf

	Module ngx_http_userid_module
	Summary
	Example Configuration
	Directives
	userid
	userid_domain
	userid_expires
	userid_mark
	userid_name
	userid_p3p
	userid_path
	userid_service

	Embedded Variables

	Module ngx_http_uwsgi_module
	Summary
	Example Configuration
	Directives
	uwsgi_bind
	uwsgi_buffer_size
	uwsgi_buffering
	uwsgi_buffers
	uwsgi_busy_buffers_size
	uwsgi_cache
	uwsgi_cache_bypass
	uwsgi_cache_key
	uwsgi_cache_lock
	uwsgi_cache_lock_age
	uwsgi_cache_lock_timeout
	uwsgi_cache_methods
	uwsgi_cache_min_uses
	uwsgi_cache_path
	uwsgi_cache_purge
	uwsgi_cache_revalidate
	uwsgi_cache_use_stale
	uwsgi_cache_valid
	uwsgi_connect_timeout
	uwsgi_force_ranges
	uwsgi_hide_header
	uwsgi_ignore_client_abort
	uwsgi_ignore_headers
	uwsgi_intercept_errors
	uwsgi_limit_rate
	uwsgi_max_temp_file_size
	uwsgi_modifier1
	uwsgi_modifier2
	uwsgi_next_upstream
	uwsgi_next_upstream_timeout
	uwsgi_next_upstream_tries
	uwsgi_no_cache
	uwsgi_param
	uwsgi_pass
	uwsgi_pass_header
	uwsgi_pass_request_body
	uwsgi_pass_request_headers
	uwsgi_read_timeout
	uwsgi_request_buffering
	uwsgi_send_timeout
	uwsgi_ssl_certificate
	uwsgi_ssl_certificate_key
	uwsgi_ssl_ciphers
	uwsgi_ssl_crl
	uwsgi_ssl_name
	uwsgi_ssl_password_file
	uwsgi_ssl_protocols
	uwsgi_ssl_server_name
	uwsgi_ssl_session_reuse
	uwsgi_ssl_trusted_certificate
	uwsgi_ssl_verify
	uwsgi_ssl_verify_depth
	uwsgi_store
	uwsgi_store_access
	uwsgi_temp_file_write_size
	uwsgi_temp_path

	Module ngx_http_v2_module
	Summary
	Known Issues
	Example Configuration
	Directives
	http2_chunk_size
	http2_body_preread_size
	http2_idle_timeout
	http2_max_concurrent_streams
	http2_max_field_size
	http2_max_header_size
	http2_recv_buffer_size
	http2_recv_timeout

	Embedded Variables

	Module ngx_http_xslt_module
	Summary
	Example Configuration
	Directives
	xml_entities
	xslt_last_modified
	xslt_param
	xslt_string_param
	xslt_stylesheet
	xslt_types

	Stream server modules
	Module ngx_stream_core_module
	Summary
	Example Configuration
	Directives
	listen
	preread_buffer_size
	preread_timeout
	proxy_protocol_timeout
	resolver
	resolver_timeout
	server
	stream
	tcp_nodelay
	variables_hash_bucket_size
	variables_hash_max_size

	Embedded Variables

	Module ngx_stream_access_module
	Summary
	Example Configuration
	Directives
	allow
	deny

	Module ngx_stream_geo_module
	Summary
	Example Configuration
	Directives
	geo

	Module ngx_stream_geoip_module
	Summary
	Example Configuration
	Directives
	geoip_country
	geoip_city
	geoip_org

	Module ngx_stream_limit_conn_module
	Summary
	Example Configuration
	Directives
	limit_conn
	limit_conn_log_level
	limit_conn_zone

	Module ngx_stream_log_module
	Summary
	Example Configuration
	Directives
	access_log
	log_format
	open_log_file_cache

	Module ngx_stream_map_module
	Summary
	Example Configuration
	Directives
	map
	map_hash_bucket_size
	map_hash_max_size

	Module ngx_stream_proxy_module
	Summary
	Example Configuration
	Directives
	proxy_bind
	proxy_buffer_size
	proxy_connect_timeout
	proxy_download_rate
	proxy_next_upstream
	proxy_next_upstream_timeout
	proxy_next_upstream_tries
	proxy_pass
	proxy_protocol
	proxy_responses
	proxy_ssl
	proxy_ssl_certificate
	proxy_ssl_certificate_key
	proxy_ssl_ciphers
	proxy_ssl_crl
	proxy_ssl_name
	proxy_ssl_password_file
	proxy_ssl_server_name
	proxy_ssl_session_reuse
	proxy_ssl_protocols
	proxy_ssl_trusted_certificate
	proxy_ssl_verify
	proxy_ssl_verify_depth
	proxy_timeout
	proxy_upload_rate

	Module ngx_stream_realip_module
	Summary
	Example Configuration
	Directives
	set_real_ip_from

	Embedded Variables

	Module ngx_stream_return_module
	Summary
	Example Configuration
	Directives
	return

	Module ngx_stream_split_clients_module
	Summary
	Example Configuration
	Directives
	split_clients

	Module ngx_stream_ssl_module
	Summary
	Example Configuration
	Directives
	ssl_certificate
	ssl_certificate_key
	ssl_ciphers
	ssl_dhparam
	ssl_ecdh_curve
	ssl_handshake_timeout
	ssl_password_file
	ssl_prefer_server_ciphers
	ssl_protocols
	ssl_session_cache
	ssl_session_ticket_key
	ssl_session_tickets
	ssl_session_timeout

	Embedded Variables

	Module ngx_stream_ssl_preread_module
	Summary
	Example Configuration
	Directives
	ssl_preread

	Embedded Variables

	Module ngx_stream_upstream_module
	Summary
	Example Configuration
	Directives
	upstream
	server
	zone
	state
	hash
	least_conn
	least_time
	health_check
	health_check_timeout
	match

	Embedded Variables

	Mail server modules
	Module ngx_mail_core_module
	Summary
	Example Configuration
	Directives
	listen
	mail
	protocol
	resolver
	resolver_timeout
	server
	server_name
	timeout

	Module ngx_mail_auth_http_module
	Directives
	auth_http
	auth_http_header
	auth_http_pass_client_cert
	auth_http_timeout

	Protocol

	Module ngx_mail_proxy_module
	Directives
	proxy_buffer
	proxy_pass_error_message
	proxy_timeout
	xclient

	Module ngx_mail_ssl_module
	Summary
	Example Configuration
	Directives
	ssl
	ssl_certificate
	ssl_certificate_key
	ssl_ciphers
	ssl_client_certificate
	ssl_crl
	ssl_dhparam
	ssl_ecdh_curve
	ssl_password_file
	ssl_prefer_server_ciphers
	ssl_protocols
	ssl_session_cache
	ssl_session_ticket_key
	ssl_session_tickets
	ssl_session_timeout
	ssl_trusted_certificate
	ssl_verify_client
	ssl_verify_depth
	starttls

	Module ngx_mail_imap_module
	Directives
	imap_auth
	imap_capabilities
	imap_client_buffer

	Module ngx_mail_pop3_module
	Directives
	pop3_auth
	pop3_capabilities

	Module ngx_mail_smtp_module
	Directives
	smtp_auth
	smtp_capabilities

	Miscellaneous
	High Availability support for NGINX Plus
	High Availability support
	Configuring HA setup
	Check scripts
	Checking the status of HA setup
	Forcing state change
	Adding more virtual IP addresses
	Troubleshooting keepalived and VRRP
	Miscellaneous

	Command-line parameters
	Overview

	Changelog for NGINX Plus
	Legal Notices
	Index

